`
yu06206
  • 浏览: 111868 次
  • 性别: Icon_minigender_1
  • 来自: 长沙
社区版块
存档分类
最新评论

MapReduce运行流程源码分析(二)

阅读更多


这篇博客是接着昨天分析MapReduce的流程继续进行分析的:

4.JobTracker接收Heartbeat并向TaskTracker分配任务

上一步中TaskTracker调用transmitHeartBeat方法发送Heartbeat给JobTracker,当JobTracker被RPC调用来发送heartbeat的时候,JobTracker的heartbeat(TaskTrackerStatus status,boolean ,initialContact, booleanacceptNewTasks, short responseId)函数被调用。

(1)我们看一下JobTracker类的heartbeat方法

 

public synchronized HeartbeatResponse heartbeat(TaskTrackerStatus status, 
                                                  boolean restarted,
                                                  boolean initialContact,
                                                  boolean acceptNewTasks, 
                                                  short responseId) 
    throws IOException {
    if (LOG.isDebugEnabled()) {
      LOG.debug("Got heartbeat from: " + status.getTrackerName() + 
                " (restarted: " + restarted + 
                " initialContact: " + initialContact + 
                " acceptNewTasks: " + acceptNewTasks + ")" +
                " with responseId: " + responseId);
    }

    // Make sure heartbeat is from a tasktracker allowed by the jobtracker.
    if (!acceptTaskTracker(status)) {
      throw new DisallowedTaskTrackerException(status);
    }
    ....
    //初始化一个HeartbeatResponse对象
    HeartbeatResponse prevHeartbeatResponse =
      trackerToHeartbeatResponseMap.get(trackerName);

    if (initialContact != true) {
      // If this isn't the 'initial contact' from the tasktracker,
      // there is something seriously wrong if the JobTracker has
      // no record of the 'previous heartbeat'; if so, ask the 
      // tasktracker to re-initialize itself.
      if (prevHeartbeatResponse == null) {
        // This is the first heartbeat from the old tracker to the newly 
        // started JobTracker
        
        // Jobtracker might have restarted but no recovery is needed
        // otherwise this code should not be reached
        LOG.warn("Serious problem, cannot find record of 'previous' " +
                 "heartbeat for '" + trackerName + 
                 "'; reinitializing the tasktracker");
        return new HeartbeatResponse(responseId, 
            new TaskTrackerAction[] {new ReinitTrackerAction()});
      
      } else {
                
        // It is completely safe to not process a 'duplicate' heartbeat from a 
        // {@link TaskTracker} since it resends the heartbeat when rpcs are 
        // lost see {@link TaskTracker.transmitHeartbeat()};
        // acknowledge it by re-sending the previous response to let the 
        // {@link TaskTracker} go forward. 
        if (prevHeartbeatResponse.getResponseId() != responseId) {
          LOG.info("Ignoring 'duplicate' heartbeat from '" + 
              trackerName + "'; resending the previous 'lost' response");
          return prevHeartbeatResponse;
        }
      }
    }
      
    // Process this heartbeat 
    short newResponseId = (short)(responseId + 1);
    status.setLastSeen(now);
    if (!processHeartbeat(status, initialContact)) {
      if (prevHeartbeatResponse != null) {
        trackerToHeartbeatResponseMap.remove(trackerName);
      }
      return new HeartbeatResponse(newResponseId, 
                   new TaskTrackerAction[] {new ReinitTrackerAction()});
    }
      
    // Initialize the response to be sent for the heartbeat
    HeartbeatResponse response = new HeartbeatResponse(newResponseId, null);
    List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
    isBlacklisted = faultyTrackers.isBlacklisted(status.getHost());
    // Check for new tasks to be executed on the tasktracker
  //如果TaskTracker向JobTracker请求一个task运行
    if (acceptNewTasks && !isBlacklisted) {
      TaskTrackerStatus taskTrackerStatus = getTaskTrackerStatus(trackerName) ;
      if (taskTrackerStatus == null) {
        LOG.warn("Unknown task tracker polling; ignoring: " + trackerName);
      } else {
	 //setup和cleanup的task的优先次序最高
        List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
        if (tasks == null ) {
	//taskScheduler.assignTasks方法注册一个task
          tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName));
        }
        if (tasks != null) {
          for (Task task : tasks) {
  	//将任务放入actions列表,返回给TaskTracker
            expireLaunchingTasks.addNewTask(task.getTaskID());
            if (LOG.isDebugEnabled()) {
              LOG.debug(trackerName + " -> LaunchTask: " + task.getTaskID());
            }
            actions.add(new LaunchTaskAction(task));
          }
        }
      }
    }
    ....   
    return response;
  }

 

 

通过调用上面的方法其中实现了task在taskScheduler的注册,JobQueueTaskScheduler是JobTracker默认的Task调度器,上面方法中taskScheduler.assignTasks(),注册一个Task。

(2)下一步我们看一下JobQueueTaskScheduler类的assignTasks方法

 

public synchronized List<Task> assignTasks(TaskTracker taskTracker)
      throws IOException {
    TaskTrackerStatus taskTrackerStatus = taskTracker.getStatus(); 
    ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
    final int numTaskTrackers = clusterStatus.getTaskTrackers();
    final int clusterMapCapacity = clusterStatus.getMaxMapTasks();
    final int clusterReduceCapacity = clusterStatus.getMaxReduceTasks();

    Collection<JobInProgress> jobQueue =
      jobQueueJobInProgressListener.getJobQueue();
    ....
    //
    // Compute (running + pending) map and reduce task numbers across pool
    // 计算剩余的map和reduce的工作量:remaining
    int remainingReduceLoad = 0;
    int remainingMapLoad = 0;
    synchronized (jobQueue) {
      for (JobInProgress job : jobQueue) {
        if (job.getStatus().getRunState() == JobStatus.RUNNING) {
          remainingMapLoad += (job.desiredMaps() - job.finishedMaps());
          if (job.scheduleReduces()) {
            remainingReduceLoad += 
              (job.desiredReduces() - job.finishedReduces());
          }
        }
      }
    }

    // Compute the 'load factor' for maps and reduces
    double mapLoadFactor = 0.0;
    if (clusterMapCapacity > 0) {
      mapLoadFactor = (double)remainingMapLoad / clusterMapCapacity;
    }
    double reduceLoadFactor = 0.0;
    if (clusterReduceCapacity > 0) {
      reduceLoadFactor = (double)remainingReduceLoad / clusterReduceCapacity;
    }
        
    
    final int trackerCurrentMapCapacity = 
      Math.min((int)Math.ceil(mapLoadFactor * trackerMapCapacity), 
                              trackerMapCapacity);
    int availableMapSlots = trackerCurrentMapCapacity - trackerRunningMaps;
    boolean exceededMapPadding = false;
    if (availableMapSlots > 0) {
      exceededMapPadding = 
        exceededPadding(true, clusterStatus, trackerMapCapacity);
    }
    //计算平均每个TaskTracker应有的工作量,remaining/numTaskTrackers是剩余的工作量除以

TaskTracker的个数。
    int numLocalMaps = 0;
    int numNonLocalMaps = 0;
    scheduleMaps:
    for (int i=0; i < availableMapSlots; ++i) {
      synchronized (jobQueue) {
        for (JobInProgress job : jobQueue) {
          if (job.getStatus().getRunState() != JobStatus.RUNNING) {
            continue;
          }

          Task t = null;
          
          // Try to schedule a node-local or rack-local Map task
          t = 
            job.obtainNewLocalMapTask(taskTrackerStatus, numTaskTrackers,
                                      taskTrackerManager.getNumberOfUniqueHosts());
          if (t != null) {
            assignedTasks.add(t);
            ++numLocalMaps;
            
            // Don't assign map tasks to the hilt!
            // Leave some free slots in the cluster for future task-failures,
            // speculative tasks etc. beyond the highest priority job
            if (exceededMapPadding) {
              break scheduleMaps;
            }
           
            // Try all jobs again for the next Map task 
            break;
          }
          
          // Try to schedule a node-local or rack-local Map task
          t = 
            job.obtainNewNonLocalMapTask(taskTrackerStatus, numTaskTrackers,
                                   taskTrackerManager.getNumberOfUniqueHosts());
          
          if (t != null) {
            assignedTasks.add(t);
            ++numNonLocalMaps;
            
            // We assign at most 1 off-switch or speculative task
            // This is to prevent TaskTrackers from stealing local-tasks
            // from other TaskTrackers.
            break scheduleMaps;
          }
        }
      }
    }
    int assignedMaps = assignedTasks.size();
    ....
    return assignedTasks;
  }

 

 

以上的过程可能要经过一个复杂的计算,由jobTracker调度Task,从上面的代码中我们可以知道,JobInProgress的obtainNewMapTask是用来分配调度map task的,其主要调用findNewMapTask,根据TaskTracker所在的Node从nonRunningMapCache中查找TaskInProgress.同样的道理JobInProgress的obtainNewReduceTask是用来分配reduce task的,其主要调用findNewReduceTask,从nonRunningReduces查找TaskInProgress。然后又JobTracker进行任务的分配,这个步骤就结束了,由于这个步骤比较简单这里就不画流程图了。

5.TaskTracker接收HeartbeatResponse并执行任务

在向JobTracker发送heartbeat后,如果返回的heartbeatreponse中含有分配好的任务LaunchTaskAction,TaskTracker则调用addToTaskQueue方法,将其加入TaskTracker类中MapLauncher或者ReduceLauncher对象的taskToLaunch队列。具体的怎么通过RPC接收到heartbeatreponse这里不做分析,接收到分配的任务后,调用

addToTaskQueue方法。

(1)所以我们先看一下addToTaskQueue方法

 

private void addToTaskQueue(LaunchTaskAction action) {
    if (action.getTask().isMapTask()) {
      mapLauncher.addToTaskQueue(action);
    } else {
      reduceLauncher.addToTaskQueue(action);
    }
  }

 

 

在此,MapLauncher和ReduceLauncher对象均为TaskLauncher类的实例。该类是TaskTracker类的一个内部类,具有一个数据成员,是TaskTracker.TaskInProgress类型的队列。在此特别注意,在TaskTracker类内部所提到的TaskInProgress类均为TaskTracker的内部类,我们用TaskTracker.TaskInProgress表示,一定要和MapRed包中的TaskInProgress类区分,后者我们直接用TaskInProgress表示。如果应答包中包含的任务是map task则放入mapLancher的taskToLaunch队列,如果是reduce task则放入reduceLancher的taskToLaunch队列。

(2)不管是map task还是reduce task都要调用TaskLauncher中的addToTaskQueue方法

 

public void addToTaskQueue(LaunchTaskAction action) {
      synchronized (tasksToLaunch) {
        TaskInProgress tip = registerTask(action, this);
        tasksToLaunch.add(tip);
        tasksToLaunch.notifyAll();
      }
    }

 

 

(3)然后继续registerTask方法

 

 private TaskInProgress registerTask(LaunchTaskAction action, 
      TaskLauncher launcher) {
  //从action中获取Task对象
    Task t = action.getTask();
    LOG.info("LaunchTaskAction (registerTask): " + t.getTaskID() +
             " task's state:" + t.getState());
    TaskInProgress tip = new TaskInProgress(t, this.fConf, launcher);
    synchronized (this) {
   //在相应的数据结构中增加所生成的TaskTracker.TaskInProgress对象,以通知程序其他部分该

任务的建立
      tasks.put(t.getTaskID(), tip);
      runningTasks.put(t.getTaskID(), tip);
      boolean isMap = t.isMapTask();
      if (isMap) {
        mapTotal++;
      } else {
        reduceTotal++;
      }
    }
    return tip;
  }

 

 

同时,TaskLauncher类继承了Thread类,所以在程序运行过程中,它们各自都以一个线程独立运行。它们的启动在TaskTracker初始化过程中已经完成。该类的run函数就是不断监测taskToLaunch队列中是否有新的TaskTracker.TaskInProgress对象加入。如果有则从中取出一个对象,然后调用TaskTracker类的startNewTask(TaskInProgress tip)来启动一个task。

(4)我们看一下启动的run方法

 

 public void run() {
      while (!Thread.interrupted()) {
        try {
          TaskInProgress tip;
          Task task;
          synchronized (tasksToLaunch) {
            while (tasksToLaunch.isEmpty()) {
              tasksToLaunch.wait();
            }
           .....
          synchronized (tip) {
            //to make sure that there is no kill task action for this
            if (!tip.canBeLaunched()) {
              //got killed externally while still in the launcher queue
              LOG.info("Not launching task " + task.getTaskID() + " as it got"
                + " killed externally. Task's state is " + tip.getRunState());
              addFreeSlots(task.getNumSlotsRequired());
              continue;
            }
            tip.slotTaken = true;
          }
          //got a free slot. launch the task
          //启动一个新的Task
          startNewTask(tip);
        } catch (InterruptedException e) { 
          return; // ALL DONE
        } catch (Throwable th) {
          LOG.error("TaskLauncher error " + 
              StringUtils.stringifyException(th));
        }
      }

 而startNewTask方法主要是调用了localizeJob(tip)方法实现本地化,完成从HDFS拷贝的TaskTracker的本地文件系统中:job.split,job.xml以及job.jar以及Task运行的必须的文件,这个过程属于非常重要的部分

 

(5)看一下重要的localizeJob方法

 

 RunningJob localizeJob(TaskInProgress tip
                           ) throws IOException, InterruptedException {
    Task t = tip.getTask();
    JobID jobId = t.getJobID();
    RunningJob rjob = addTaskToJob(jobId, tip);

    // Initialize the user directories if needed.
    //初始化用户文件目录
    getLocalizer().initializeUserDirs(t.getUser());

    synchronized (rjob) {
      if (!rjob.localized) {
       //初始化本地配置文件
        JobConf localJobConf = localizeJobFiles(t, rjob);
        // 初始化日志目录
        initializeJobLogDir(jobId, localJobConf);

        // Now initialize the job via task-controller so as to set
        // ownership/permissions of jars, job-work-dir. Note that initializeJob
        // should be the last call after every other directory/file to be
        // directly under the job directory is created.
	
        JobInitializationContext context = new JobInitializationContext();
        context.jobid = jobId;
        context.user = t.getUser();
        context.workDir = new File(localJobConf.get(JOB_LOCAL_DIR));
        taskController.initializeJob(context);

        rjob.jobConf = localJobConf;
        rjob.keepJobFiles = ((localJobConf.getKeepTaskFilesPattern() != null) ||
                             localJobConf.getKeepFailedTaskFiles());
        rjob.localized = true;
      }
    }
    return rjob;
  }

 

 

(6)然后进行了一系列本地化的操作,这个步骤比较繁琐,我们简单看一下几个方法

 

PathlocalJobFile = lDirAlloc.getLocalPathForWrite(

                  getLocalJobDir(jobId.toString())

                 + Path.SEPARATOR + "job.xml",

                  jobFileSize, fConf);

 RunningJob rjob = addTaskToJob(jobId, tip);

 synchronized (rjob) {

    if(!rjob.localized) {

     FileSystem localFs = FileSystem.getLocal(fConf);

      PathjobDir = localJobFile.getParent();

      ……

      //将job.split拷贝到本地

     systemFS.copyToLocalFile(jobFile, localJobFile);

     JobConf localJobConf = new JobConf(localJobFile);

      PathworkDir = lDirAlloc.getLocalPathForWrite(

                      (getLocalJobDir(jobId.toString())

                       + Path.SEPARATOR +"work"), fConf);

      if(!localFs.mkdirs(workDir)) {

       throw new IOException("Mkdirs failed to create "

                    + workDir.toString());

      }

     System.setProperty("job.local.dir", workDir.toString());

     localJobConf.set("job.local.dir", workDir.toString());

      //copy Jar file to the local FS and unjar it.

     String jarFile = localJobConf.getJar();

      longjarFileSize = -1;

      if(jarFile != null) {

       Path jarFilePath = new Path(jarFile);

       localJarFile = new Path(lDirAlloc.getLocalPathForWrite(

                                  getLocalJobDir(jobId.toString())

                                   +Path.SEPARATOR + "jars",

                                   5 *jarFileSize, fConf), "job.jar");

        if(!localFs.mkdirs(localJarFile.getParent())) {

         throw new IOException("Mkdirs failed to create jars directory");

        }

        //将job.jar拷贝到本地

       systemFS.copyToLocalFile(jarFilePath, localJarFile);

       localJobConf.setJar(localJarFile.toString());

       //将job得configuration写成job.xml

       OutputStream out = localFs.create(localJobFile);

        try{

         localJobConf.writeXml(out);

        }finally {

         out.close();

        }

        // 解压缩job.jar

       RunJar.unJar(new File(localJarFile.toString()),

                     newFile(localJarFile.getParent().toString()));

      }

     rjob.localized = true;

     rjob.jobConf = localJobConf;

    }

  }

  //真正的启动此Task

 launchTaskForJob(tip, new JobConf(rjob.jobConf));

}

当所有的task运行所需要的资源都拷贝到本地后,则调用TaskTracker的launchTaskForJob方法,其又调用TaskTracker.TaskInProgress的launchTask函数

 

public synchronized void launchTask() throwsIOException {

    ……

    //创建task运行目录

   localizeTask(task);

    if(this.taskStatus.getRunState() == TaskStatus.State.UNASSIGNED) {

     this.taskStatus.setRunState(TaskStatus.State.RUNNING);

    }

    //创建并启动TaskRunner,对于MapTask,创建的是MapTaskRunner,对于ReduceTask,创建的是ReduceTaskRunner

   this.runner = task.createRunner(TaskTracker.this, this);

   this.runner.start();

   this.taskStatus.setStartTime(System.currentTimeMillis());

}

TaskRunner是抽象类,是Thread类的子类,其run函数如下:

public final void run() {

    ……

   TaskAttemptID taskid = t.getTaskID();

   LocalDirAllocator lDirAlloc = newLocalDirAllocator("mapred.local.dir");

    FilejobCacheDir = null;

    if(conf.getJar() != null) {

     jobCacheDir = new File(

                        newPath(conf.getJar()).getParent().toString());

    }

    File workDir = newFile(lDirAlloc.getLocalPathToRead(

                             TaskTracker.getLocalTaskDir(

                               t.getJobID().toString(),

                               t.getTaskID().toString(),

                                t.isTaskCleanupTask())

           + Path.SEPARATOR + MRConstants.WORKDIR,

                              conf).toString());

   FileSystem fileSystem;

    PathlocalPath;

    ……

    //拼写classpath

    StringbaseDir;

    Stringsep = System.getProperty("path.separator");

   StringBuffer classPath = new StringBuffer();

    //start with same classpath as parent process

   classPath.append(System.getProperty("java.class.path"));

   classPath.append(sep);

    if(!workDir.mkdirs()) {

      if(!workDir.isDirectory()) {

       LOG.fatal("Mkdirs failed to create " + workDir.toString());

      }

    }

    Stringjar = conf.getJar();

    if (jar!= null) {     

      // ifjar exists, it into workDir

     File[] libs = new File(jobCacheDir, "lib").listFiles();

      if(libs != null) {

        for(int i = 0; i < libs.length; i++) {

         classPath.append(sep);         //add libs from jar to classpath

         classPath.append(libs[i]);

        }

      }

     classPath.append(sep);

     classPath.append(new File(jobCacheDir, "classes"));

     classPath.append(sep);

     classPath.append(jobCacheDir);

    }

    ……

   classPath.append(sep);

   classPath.append(workDir);

    //拼写命令行java及其参数

   Vector<String> vargs = new Vector<String>(8);

    Filejvm =

      newFile(new File(System.getProperty("java.home"), "bin"),"java");

   vargs.add(jvm.toString());

    StringjavaOpts = conf.get("mapred.child.java.opts", "-Xmx200m");

   javaOpts = javaOpts.replace("@taskid@", taskid.toString());

    String[] javaOptsSplit = javaOpts.split(" ");

    StringlibraryPath = System.getProperty("java.library.path");

    if(libraryPath == null) {

     libraryPath = workDir.getAbsolutePath();

    } else{

     libraryPath += sep + workDir;

    }

    booleanhasUserLDPath = false;

    for(inti=0; i<javaOptsSplit.length ;i++) {

     if(javaOptsSplit[i].startsWith("-Djava.library.path=")) {

       javaOptsSplit[i] += sep + libraryPath;

        hasUserLDPath = true;

       break;

      }

    }

   if(!hasUserLDPath) {

     vargs.add("-Djava.library.path=" + libraryPath);

    }

    for(int i = 0; i < javaOptsSplit.length; i++) {

     vargs.add(javaOptsSplit[i]);

    }

    //添加Child进程的临时文件夹

    Stringtmp = conf.get("mapred.child.tmp", "./tmp");

    PathtmpDir = new Path(tmp);

    if(!tmpDir.isAbsolute()) {

     tmpDir = new Path(workDir.toString(), tmp);

    }

   FileSystem localFs = FileSystem.getLocal(conf);

    if(!localFs.mkdirs(tmpDir) && !localFs.getFileStatus(tmpDir).isDir()) {

      thrownew IOException("Mkdirs failed to create " + tmpDir.toString());

    }

   vargs.add("-Djava.io.tmpdir=" + tmpDir.toString());

    // Addclasspath.

   vargs.add("-classpath");

   vargs.add(classPath.toString());

    //log文件夹

    longlogSize = TaskLog.getTaskLogLength(conf);

   vargs.add("-Dhadoop.log.dir=" +

        newFile(System.getProperty("hadoop.log.dir")

       ).getAbsolutePath());

   vargs.add("-Dhadoop.root.logger=INFO,TLA");

   vargs.add("-Dhadoop.tasklog.taskid=" + taskid);

   vargs.add("-Dhadoop.tasklog.totalLogFileSize=" + logSize);

    // 运行map task和reduce task的子进程的main class是Child

   vargs.add(Child.class.getName()); // main of Child

 最后贴一张这个步骤的流程图,后续流程明天继续分析!!!

 

  • 大小: 37.3 KB
分享到:
评论

相关推荐

    MapReduce 2.0源码分析与编程实

    全书分为10章,系统地介绍了HDFS存储系统,Hadoop的文件I/O系统,MapReduce2.0的框架结构和源码分析,MapReduce2.0的配置与测试,MapReduce2.0运行流程,MapReduce2.0高级程序设计以及相关特性等内容。《MapReduce...

    MapReduce2.0源码分析与实战编程

    全书分为10章,系统地介绍了HDFS存储系统,Hadoop的文件I/O系统,MapReduce 2.0的框架结构和源码分析,MapReduce 2.0的配置与测试,MapReduce 2.0运行流程,MapReduce 2.0高级程序设计以及相关特性等内容。...

    MapReduce源码分析完整版

    ### MapReduce源码分析知识点详解 #### 一、MapReduce概览 MapReduce是一种由Google工程师开创的大规模数据处理的分布式计算模型。该模型的核心在于处理和生成大规模数据集,其设计灵感来源于函数式编程的概念,即...

    MapReduce源码分析

    总结,MapReduce的源码分析涵盖了数据分片、Map函数、Shuffle过程、Reduce函数、输入输出格式、任务调度等多个关键部分。理解这些核心组件的工作原理,有助于我们更高效地利用Hadoop MapReduce处理大数据,同时也...

    MapReduce源码流程.pdf

    以下是MapReduce执行流程、Split切片、以及MapTask过程的详细解析。 1. MapReduce执行流程: MapReduce的工作流程主要分为四个步骤:作业提交、任务调度、Map任务执行和Reduce任务执行。首先,客户端将作业提交给...

    Hadoop MapReduce Cookbook 源码

    书中提供的源码对于理解MapReduce的工作流程至关重要,读者可以通过实际运行和修改这些代码,加深对概念的理解。 在阅读和实践过程中,建议读者结合Hadoop官方文档和其他相关资料,以便更全面地学习。同时,不断...

    hadoop 框架下 mapreduce源码例子 wordcount

    5. **运行流程**: 在Eclipse中,编译并打包WordCount项目为JAR文件。然后,通过Hadoop的`hadoop jar`命令将这个JAR文件提交到集群,指定输入文件和输出目录。Hadoop的分布式文件系统(HDFS)会自动处理文件的分发...

    MapReduce分析Youtube数据内含源码以及说明书可以自己运行复现.zip

    在这个"MapReduce分析Youtube数据内含源码以及说明书可以自己运行复现.zip"压缩包中,包含了对YouTube数据进行分析的完整流程。这可能包括用户行为数据、视频信息、评论等。通过MapReduce,我们可以对这些数据进行...

    mapreduce源码

    通过深入分析这些源代码,开发者可以更好地理解Hadoop MapReduce的工作流程,从而定制化处理逻辑、优化性能,甚至开发新的功能。对于大数据处理和分布式计算领域的研究者和工程师来说,这是一个极有价值的学习材料。

    SDU-大数据实验&课设(mapreduce)内含源码和说明书(可以直接运行).zip

    2. **源码分析**: - `AudioRecommend`:这部分代码可能是实现音频推荐算法的核心部分,可能涉及到机器学习模型,如协同过滤或基于内容的推荐,通过对用户听歌历史和音乐特征的分析,为用户推荐相似或相关的音频...

    MapReduce保姆级教程源码

    这个保姆级教程源码旨在帮助初学者理解和掌握MapReduce的核心概念与工作原理,从而进行简单数据分析。在这个教程中,我们将深入探讨MapReduce如何在大数据背景下实现高效的并行计算。 1. **MapReduce的基本概念** ...

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    ### 使用命令行编译打包运行自己...以上就是使用命令行编译打包运行自己的MapReduce程序的过程详解,包括了Hadoop 2.6.0版本的变化、编译打包流程、运行命令解析以及使用Eclipse进行开发的方法。希望对初学者有所帮助。

    MapReduce Job本地提交过程源码跟踪及分析

    MapReduce是Hadoop生态系统中的核心组件,主要用于处理和存储大规模数据。...通过阅读《Job本地提交过程源码分析及图解》这样的文档,我们可以深入学习MapReduce的工作原理,提升我们的Hadoop编程技能。

    Hadoop源码分析(完整版)

    Hadoop源码分析是深入理解Hadoop分布式计算平台原理的起点,通过源码分析,可以更好地掌握Hadoop的工作机制、关键组件的实现方式和内部通信流程。Hadoop项目包括了多个子项目,其中最核心的是HDFS和MapReduce,这两...

    java操作hadoop之mapreduce分析年气象数据最低温度实战源码

    通过这个实战项目,学习者不仅可以掌握Java操作Hadoop MapReduce的基本方法,还能深入了解大数据处理流程,以及如何从海量气象数据中提取有价值的信息。此外,对于提升数据处理能力和分布式计算的理解也大有裨益。...

    Hadoop源码分析视频下载

    这个"Hadoop源码分析视频下载"提供了一种深入理解Hadoop内部工作原理的途径,这对于开发者、系统管理员以及对大数据技术感兴趣的人来说是非常有价值的。接下来,我们将详细探讨Hadoop的核心组件、其设计哲学、源码...

    Hadoop源码分析.rar

    源码分析会涉及HDFS的文件读写流程、副本策略以及故障恢复机制。 此外,Hadoop的源码还涵盖了如**InputFormat**和**OutputFormat**等接口,它们定义了数据输入和输出的格式。学习者可以通过分析源码理解如何自定义...

Global site tag (gtag.js) - Google Analytics