<script type="text/javascript"></script> Concurrent programming has been around for quite some time (almost half a century), but it was mostly accessible to the highest ranks of the programming priesthood. This changed when, in the 2000s, concurrency entered prime time, prodded by the ubiquity of multicore processors. The industry can no longer afford to pay for hand-crafted hand-debugged concurrent solutions. The search is on for programming paradigms that lead to high productivity and reliability.
Recently DARPA created its HPCS, High Productivity Computing Systems, program (notice the stress on productivity), and is funding research that lead to, among other things, the development of new programming languages that support concurrency. I had a peek at those languages and saw some very interesting developments which I’d like to share with you. But first let me give you some perspective on the current state of concurrency.
Latency vs. Parallel Performance
We are living in the world of multicores and our biggest challenge is to make use of parallelism to speed up the execution of programs. As Herb Sutter famously observed, we can no longer count on the speed of processors increasing exponentially. If we want our programs to run faster we have to find ways to take advantage of the exponential increase in the number of available processors.
Even before multicores, concurrency had been widely used to reduce latencies and to take advantage of the parallelism of some peripherals (e.g., disks). Low latency is particularly important in server architectures, where you can’t wait for the completion of one request before you pick up the next one.
Initially, the same approach that was used to reduce latency–creating threads and using message-passing to communicate between them–has been used to improve parallel performance. It worked, but it turned out to be extremely tedious as a programming paradigm.
There will always be a niche for client/server architectures, which are traditionally based on direct use of threads and message passing. But in this post I will limit myself to strategies for maximizing program performance using parallelism. These strategies are becoming exponentially more important with time.
Threads? Who Needs Threads?
There are two extremes in multithreading. One is to make each thread execute different code–they all have different thread functions (MPMD–Multiple Programs Multiple Data, or even MPSD–Multiple Programs Single Data). This approach doesn’t scale very well with the number of cores–after all there is a fixed number of thread functions in one program no matter how many cores it’s running on.
The other extreme is to spawn many threads that essentially do the same thing (SPMD, Single Program Multiple Data). On the very extreme we have SIMD (Single Instruction Multiple Data), the approach taken, e.g., graphics accelerators. There, multiple cores execute the same instructions in lockstep. The trick is to start them with slightly different initial states and data sets (the MD part), so they all do independently useful work. With SPMD, you don’t have to write lots of different thread functions and you have a better chance at scaling with the number of cores.
There are two kinds of SPMD. When you start with a large data set and split it into smaller chunks and create separate threads to process each chunk, it’s called data-driven parallelism. If, on the other hand, you have a loop whose iterations don’t depend on each other (no data dependencies), and you create multiple threads to process individual iterations (or groups thereof), it’s called control-driven parallelism.
These types of parallelism become more and more important because they allow programs to be written independent of the number of available cores. And, more importantly, they can be partially automated (see my blog on semi-implicit parallelism).
In the past, to explore parallelism, you had to create your own thread pools, assign tasks to them, balance the loads, etc., by hand. Having this capacity built into the language (or a library) takes your mind off the gory details. You gain productivity not by manipulating threads but by identifying the potential for parallelism and letting the compiler and the runtime take care of the details.
In task-driven parallelism, the programmer is free to pick arbitrary granularity for potential parallelizability, rather than being forced into the large-grain of system threads. As always, one more degree of indirection solves the problem. The runtime may chose to multiplex tasks between threads and implement work stealing queues, like it’s done in Haskell, TPL, or TBB. Programming with tasks rather than threads is also less obtrusive, especially if it has direct support in the language.
Shared Memory or Message Passing?
Threads share memory, so it’s natural to use shared memory for communication between threads. It’s fast but, unfortunately, plagued with data races. To avoid races, access to shared (mutable) memory must be synchronized. Synchronization is usually done using locks (critical sections, semaphores, etc.). It’s up to the programmer to come up with locking protocols that eliminate races and don’t lead to deadlocks. This, unfortunately, is hard, very hard. It’s definitely not a high-productivity paradigm.
One way to improve the situation is to hide the locking protocols inside message queues and switch to message passing (MP). The programmer no longer worries about data races or deadlocks. As a bonus, MP scales naturally to distributed, multi-computer, programming. Erlang is the prime example of a programming language that uses MP exclusively as its concurrency paradigm. So why isn’t everybody happy with just passing messages?
Unfortunately not all problems lend themselves easily to MP solutions–in particular, data driven parallelism is notoriously hard to express using message passing. And then there is the elephant in the room–inversion of control.
We think linearly and we write (and read) programs linearly–line by line. The more non-linear the program gets, the harder it is to design, code, and maintain it (gotos are notorious for delinearizing programs). We can pretty easily deal with some of the simpler MP protocols–like the synchronous one. You send a message and wait for the response. In fact object oriented programming is based on such a protocol–in the Smalltalk parlance you don’t “call” a method, you “send a message” to an object. Things get a little harder when you send an asynchronous message, then do some other work, and finally “force” the answer (that’s how futures work); although that’s still manageable. But if you send a message to one thread and set up a handler for the result in another, or have one big receive
or select
statement at the top to process heterogeneous messages from different sources, you are heading towards the land of spaghetti. If you’re not careful, your program turns into a collection of handlers that keep firing at random times. You are no longer controlling the flow of execution; it’s the flow of messages that’s controlling you. Again, programmer productivity suffers. (Some research shows that the total effort to write an MPI application is significantly higher than that required to write a shared-memory version of it.)
Back to shared memory, this time without locks, but with transactional support. STM, or Software Transactional Memory, is a relatively new paradigm that’s been successfully implemented in Haskell, where the type system makes it virtually fool-proof. So far, implementations of STM in other languages haven’t been as successful, mostly because of problems with performance, isolation, and I/O. But that might change in the future–at least that’s the hope.
What is great about STM is the ease of use and reliability. You access shared memory, either for reading of writing, within atomic blocks. All code inside an atomic block executes as if there were no other threads, so there’s no need for locking. And, unlike lock-based programming, STM scales well.
There is a classic STM example in which, within a single atomic block, money is transferred between two bank accounts that are concurrently accessed by other threads. This is very hard to do with traditional locks, since you must lock both accounts before you do the transfer. That forces you not only to expose those locks but also puts you in risk of deadlocks.
As far as programmer productivity goes, STM is a keeper.
Three HPCS Languages
Yesterday’s supercomputers are today’s desktops and tomorrow’s phones. So it makes sense to look at the leading edge in supercomputer research for hints about the future. As I mentioned in the introduction, there is a well-funded DARPA program, HPCS, to develop concurrent systems. There were three companies in stage 2 of this program, and each of them decided to develop a new language:
(Sun didn’t get to the third stage, but Fortress is still under development.)
I looked at all three languages and was surprised at how similar they were. Three independent teams came up with very similar solutions–that can’t be a coincidence. For instance, all three adopted the shared address space abstraction. Mind you, those languages are supposed to cover a large area: from single-computer multicore programming (in some cases even on an SIMD graphics processor) to distributed programming over huge server farms. You’d think they’d be using message passing, which scales reasonably well between the two extremes. And indeed they do, but without exposing it to the programmer. Message passing is a hidden implementation detail. It’s considered too low-level to bother the programmer with.
Running on PGAS
All three HPCS languages support the shared address space abstraction through some form of PGAS, Partitioned Global Address Space. PGAS provides a unified way of addressing memory across machines in a cluster of computers. The global address space is partitioned into various locales (places in X10 and regions in Fortress) corresponding to local address spaces of processes and computers. If a thread tries to access a memory location within its own locale, the access is direct and shared between threads of the same locale. If, on the other hand, it tries to access a location in a different locale, messages are exchanged behind the scenes. Those could be inter-process messages on the same machine, or network messages between computers. Obviously, there are big differences in performance between local and remote accesses. Still, they may look the same from the programmer’s perspective. It’s just one happy address space.
By now you must be thinking: “What? I have no control over performance?” That would be a bad idea indeed. Don’t worry, the control is there, either explicit (locales are addressable) or in the form of locality awareness (affinity of code and data) or through distributing your data in data-driven parallelism.
Let’s talk about data parallelism. Suppose you have to process a big 2-D array and have 8 machines in your cluster. You would probably split the array into 8 chunks and spread them between the 8 locales. Each locale would take care of its chunk (and possibly some marginal areas of overlap with other chunks). If you’re expecting your program to also run in other cluster configurations, you’d need more intelligent partitioning logic. In Chapel, there is a whole embedded language for partitioning domains (index sets) and specifying their distribution among locales.
To make things more concrete, let’s say you want to distribute a (not so big) 4×8 matrix among currently available locales by splitting it into blocks and mapping each block to a locale. First you want to define a distribution–the prescription of how to distribute a block of data between locales. Here’s the relevant code in Chapel:
const Dist = new dmap(new Block(boundingBox=[1..4, 1..8]));
A Block
distribution is created with a bounding rectangle of dimension 4×8. This block is passed as an argument to the constructor of a domain map. If, for instance, the program is run on 8 locales, the block will be mapped into 8 2×2 regions, each assigned to a different locale. Libraries are supposed to provide many different distributions–block distribution being the simplest and the most useful of them.
When you apply the above map to a domain, you get a mapped domain:
var Dom: domain(2) dmapped Dist = [1..4, 1..8];
Here the variable Dom
is a 2-D domain (a set of indices) mapped using the distribution Dist
that was defined above. Compare this with a regular local domain–a set of indices (i, j)
, where i
is between 1 and 4 (inclusive) and j
is between 1 and 8.
var Dom: domain(2) = [1..4, 1..8];
Domains are used, for instance, for iteration. When you iterate over an unmapped domain, all calculations are done within the current locale (possibly in parallel, depending on the type of iteration). But if you do the same over a mapped domain, the calculations will automatically migrate to different locales.
This model of programming is characterized by a very important property: separation of algorithm from implementation. You separately describe implementation details, such as the distribution of your data structure between threads and machines; but the actual calculation is coded as if it were local and performed over monolithic data structures. That’s a tremendous simplification and a clear productivity gain.
Task-Driven Parallelism
The processing of very large (potentially multi-dimensional) arrays is very useful, especially in scientific modeling and graphics. But there are also many opportunities for parallelism in control-driven programs. All three HPCS languages chose fine-grained tasks (activities in X10, implicit threads in Fortress), not threads, as their unit of parallel execution. A task may be mapped to a thread by the runtime system but, in general, this is not a strict requirement. Bunches of small tasks may be bundled for execution within a single system thread. Fortress went the furthest in making parallelism implicit–even the for
loop is by default parallel.
From the programmer’s perspective, task-driven parallelism doesn’t expose threads (there is no need for a fork
statement or other ways of spawning threads). You simply start a potentially parallel computation. In Fortress you use a for
loop or put separate computations in a tuple (tuples are evaluated in parallel, by default). In Chapel, you use the forall
statement for loops or begin
to start a task. In X10 you use async
to mark parallelizable code.
What that means is that you don’t have to worry about how many threads to spawn, how to manage a thread pool, or how to balance the load. The system will spawn the threads for you, depending on the number of available cores, and it will distribute tasks between them and take care of load balancing, etc. In many cases it will do better than a hand-crafted thread-based solution. And in all cases the code will be simpler and easier to maintain.
Global View vs. Fragmented View
If you were to implemented parallel computation using traditional methods, for instance MPI (Message Passing Interface), instead of allocating a single array you’d allocate multiple chunks. Instead of writing an algorithm to operate on this array you’d write an algorithm that operates on chunks, with a lot of code managing boundary cases and communication. Similarly, to parallelize a loop you’d have to partially unroll it and, again, take care of such details as the uneven tail, etc. These approaches results in fragmented view of the problem.
What HPCS languages offer is global view programming. You write your program in terms of data structures and control flows that are not chopped up into pieces according to where they will be executed. Global view approach results in clearer programs that are easier to write and maintain.
Synchronization
No Synchronization?
A lot of data-driven algorithms don’t require much synchronization. Many scientific simulations use read-only arrays for input, and make only localized writes to output arrays.
Consider for instance how you’d implement the famous Game of Life. You’d probably use a read-only array for the previous snapshot and a writable array for the currently evaluated state. Both arrays would be partitioned in the same way between locales. The main loop would go over all array elements and concurrently calculate each one’s new state based on the previous state of its nearest neighbors. Notice that while the neighbors are sometimes read concurrently by multiple threads, the output is always stored once. The only synchronization needed is a thread barrier at the end of each cycle.
The current approach to synchronization in HPCS languages is the biggest disappointment to me. Data races are still possible and, since parallelism is often implicit, harder to spot.
The biggest positive surprise was that all three endorsed transactional memory, at least syntactically, through the use of atomic
statements. They didn’t solve the subtleties of isolation, so safety is not guaranteed (if you promise not to access the same data outside of atomic transactions, the transactions are isolated from each other, but that’s all).
The combination of STM and PGAS in Chapel necessitates the use of distributed STM, an area of active research (see, for instance, Software Transactional Memory for Large Scale Clusters).
In Chapel, you not only have access to atomic
statements (which are still in the implementation phase) and barriers, but also to low level synchronization primitives such as sync
and single
variables–somewhat similar to locks and condition variables. The reasoning is that Chapel wants to provide multi-resolution concurrency support. The low level primitives let you implement concurrency in the traditional style, which might come in handy, for instance, in MPMD situations. The high level primitives enable global view programming that boosts programmer productivity.
However, no matter what synchronization mechanism are used (including STM), if the language doesn’t enforce their use, programmers end up with data races–the bane of concurrent programming. The time spent debugging racy programs may significantly cut into, or even nullify, potential productivity gains. Fortress is the only language that attempted to keep track of which data is shared (and, therefore, requires synchronization), and which is local. None of the HPCS languages tried to tie sharing and synchronization to the type system in the way it is done, for instance, in the D programming language (see also my posts about race-free multithreading).
Conclusions
Here’s the tongue-in-cheek summary of the trends which, if you believe that the HPCS effort provides a glimpse of the future, will soon be entering the mainstream:
- Threads are out (demoted to latency controlling status), tasks (and semi-implicit parallelism) are in.
- Message passing is out (demoted to implementation detail), shared address space is in.
- Locks are out (demoted to low-level status), transactional memory is in.
I think we’ve been seeing the twilight of thread-based parallelism for some time (see my previous post on Parallel Programming with Hints. It’s just not the way to fully explore hardware concurrency. Traditionally, if you wanted to increase the performance of your program on multicore machines, you had to go into the low-level business of managing thread pools, splitting your work between processors, etc. This is now officially considered the assembly language of concurrency and has no place in high level programming languages.
Message passing’s major flaw is the inversion of control–it is a moral equivalent of gotos in un-structured programming (it’s about time somebody said that message passing is considered harmful). MP still has its applications and, used in moderation, can be quite handy; but PGAS offers a much more straightforward programming model–its essence being the separation of implementation from algorithm. The Platonic ideal would be for the language to figure out the best parallel implementation for a particular algorithm. Since this is still a dream, the next best thing is getting rid of the interleaving of the two in the same piece of code.
Software transactional memory has been around for more than a decade now and, despite some negative experiences, is still alive and kicking. It’s by far the best paradigm for synchronizing shared memory access. It’s unobtrusive, deadlock-free, and scalable. If we could only get better performance out of it, it would be ideal. The hope though is in moving some of the burden of TM to hardware.
Sadly, the ease of writing parallel programs using those new paradigms does not go hand in hand with improving program correctness. My worry is that chasing concurrency bugs will eat into productivity gains.
What are the chances that we’ll be writing programs for desktops in Chapel, X10, or Fortress? Probably slim. Good chances are though that the paradigms used in those languages will continue showing up in existing and future languages. You may have already seen task driven libraries sneaking into the mainstream (e.g., the .NET TPL). There is a PGAS extension of C called UPC (Unified Parallel C) and there are dialects of several languages like Java, C, C#, Scala, etc., that experiment with STM. Expect more in the future.
Acknowledgments
Special thanks go to Brad Chamberlain of the Cray Chapel team for his help and comments. As usual, a heated exchange with the Seattle Gang, especially Andrei Alexandrescu, lead to numerous improvements in this post.
相关推荐
Deprecated functions and types of the C API Deprecated Build Options Removed API and Feature Removals Porting to Python 3.6 Changes in ‘python’ Command Behavior Changes in the Python API ...
矢量边界,行政区域边界,精确到乡镇街道,可直接导入arcgis使用
毕业设计
毕业设计
经验贝叶斯EB的简单例子
智慧园区,作为现代城市发展的新形态,旨在通过高度集成的信息化系统,实现园区的智能化管理与服务。该方案提出,利用智能手环、定制APP、园区管理系统及物联网技术,将园区的各类设施与设备紧密相连,形成一个高效、便捷、安全的智能网络。从智慧社区到智慧酒店,从智慧景区到智慧康养,再到智慧生态,五大应用板块覆盖了园区的每一个角落,为居民、游客及工作人员提供了全方位、个性化的服务体验。例如,智能手环不仅能实现定位、支付、求助等功能,还能监测用户健康状况,让科技真正服务于生活。而智慧景区的建设,更是通过大数据分析、智能票务、电子围栏等先进技术,提升了游客的游玩体验,确保了景区的安全有序。 尤为值得一提的是,方案中的智慧康养服务,展现了科技对人文关怀的深刻体现。通过智慧手环与传感器,自动感知老人身体状态,及时通知家属或医疗机构,有效解决了“空巢老人”的照护难题。同时,智慧生态管理系统的应用,实现了对大气、水、植被等环境要素的实时监测与智能调控,为园区的绿色发展提供了有力保障。此外,方案还提出了建立全域旅游营销平台,整合区域旅游资源,推动旅游业与其他产业的深度融合,为区域经济的转型升级注入了新的活力。 总而言之,这份智慧园区建设方案以其前瞻性的理念、创新性的技术和人性化的服务设计,为我们展示了一个充满智慧与活力的未来园区图景。它不仅提升了园区的运营效率和服务质量,更让科技真正融入了人们的生活,带来了前所未有的便捷与舒适。对于正在规划或实施智慧园区建设的决策者而言,这份方案无疑提供了一份宝贵的参考与启示,激发了他们对于未来智慧生活的无限遐想与憧憬。
数学建模相关主题资源2
内容概要:本文围绕SQL在求职和实际工作中的应用展开,详细解析了SQL的重要性及其在不同行业中不可替代的地位。文章首先强调了SQL作为“一切数据工作的起点”,是数据分析、数据挖掘等领域必不可少的技能,并介绍了SQL与其他编程语言在就业市场的对比情况。随后重点探讨了SQL在面试过程中可能出现的挑战与应对策略,具体涉及到询问澄清问题、正确选择JOIN语句类型、恰当使用GROUP BY及相关过滤条件的区别、理解和运用窗口函数等方面,并给出了详细的实例和技巧提示。另外提醒面试者要注意重复值和空值等问题,倡导与面试官及时沟通。文中引用IEEE Spectrum编程语言排行榜证明了SQL不仅广泛应用于各行各业,在就业市场上也最受欢迎。 适用人群:从事或打算转入数据科学领域(包括但不限于数据分析师、数据科学家、数据工程师等职业方向),并对掌握和深入理解SQL有一定需求的专业人士,尤其是正准备涉及SQL相关技术面试的求职者。 使用场景及目标:帮助用户明确在面对复杂的SQL查询题目时能够更加灵活应对,提高解题效率的同时确保准确性;同时让用户意识到SQL不仅仅是简单的数据库查询工具,而是贯穿整个数据处理流程的基础能力之一,进而激发他们进一步探索的热情。 其他说明:SQL在性能方面优于Excel尤其适用于大规模数据操作;各知名企业仍将其视为标准数据操作手段。此外还提供了对初学者友好的建议,针对留学生普遍面临的难题如零散的学习资料、昂贵且效果不佳的付费教程以及难以跟上的纯英教学视频给出了改进的方向。
COMSOL仿真揭示石墨烯临界耦合光吸收特性:费米能级调控下的光学性能探究,COMSOL仿真揭示石墨烯临界耦合光吸收特性:费米能级调控下的光学性能探究,COMSOL 准 BIC控制石墨烯临界耦合光吸收。 COMSOL 光学仿真,石墨烯,光吸收,费米能级可调下图是仿真文件截图,所见即所得。 ,COMSOL; 准BIC; 石墨烯; 临界耦合光吸收; 光学仿真; 费米能级可调。,COMSOL仿真:石墨烯光吸收的BIC控制与费米能级调节
Labview与Proteus串口仿真下的温度采集与报警系统:Keil单片机程序及全套视频源码解析,Labview与Proteus串口仿真温度采集及上位机报警系统实战教程:设定阈值的Keil程序源码分享,labview 和proteus 联合串口仿真 温度采集 上位机报警 设定阈值单片机keil程序 整套视频仿真源码 ,关键词:LabVIEW;Proteus;串口仿真;温度采集;上位机报警;阈值设定;Keil程序;视频仿真源码。,LabVIEW与Proteus联合串口仿真:温度采集与报警系统,Keil程序与阈值设定全套视频源码
整车性能目标书:涵盖燃油车、混动车及纯电动车型的十六个性能模块目标定义模板与集成开发指南,整车性能目标书:涵盖燃油车、混动车及纯电动车型的十六个性能模块目标定义模板与集成开发指南,整车性能目标书,汽车性能目标书,十六个性能模块目标定义模板,包含燃油车、混动车型及纯电动车型。 对于整车性能的集成开发具有较高的参考价值 ,整车性能目标书;汽车性能目标书;性能模块目标定义模板;燃油车;混动车型;纯电动车型;集成开发;参考价值,《汽车性能模块化目标书:燃油车、混动车及纯电动车的集成开发参考》
熵值法stata代码(含stata代码+样本数据) 面板熵值法是一种在多指标综合评价中常用的数学方法,主要用于对不同的评价对象进行量化分析,以确定各个指标在综合评价中的权重。该方法结合了熵值理论和面板数据分析,能够有效地处理包含多个指标的复杂数据。
“电子电路”仿真资源(Multisim、Proteus、PCB等)
在 GEE(Google Earth Engine)中,XEE 包是一个用于处理和分析地理空间数据的工具。以下是对 GEE 中 XEE 包的具体介绍: 主要特性 地理数据处理:提供强大的函数和工具,用于处理遥感影像和其他地理空间数据。 高效计算:利用云计算能力,支持大规模数据集的快速处理。 可视化:内置可视化工具,方便用户查看和分析数据。 集成性:可以与其他 GEE API 和工具无缝集成,支持多种数据源。 适用场景 环境监测:用于监测森林砍伐、城市扩展、水体变化等环境问题。 农业分析:分析作物生长、土地利用变化等农业相关数据。 气候研究:研究气候变化对生态系统和人类活动的影响。
内容概要:本文介绍了C++编程中常见指针错误及其解决方案,并涵盖了模板元编程的基础知识和发展趋势,强调了高效流操作的最新进展——std::spanstream。文章通过一系列典型错误解释了指针的安全使用原则,强调指针初始化、内存管理和引用安全的重要性。随后介绍了模板元编程的核心特性,展示了编译期计算、类型萃取等高级编程技巧的应用场景。最后,阐述了C++23中引入的新特性std::spanstream的优势,对比传统流处理方法展现了更高的效率和灵活性。此外,还给出了针对求职者的C++技术栈学习建议,涵盖了语言基础、数据结构与算法及计算机科学基础领域内的多项学习资源与实战练习。 适合人群:正在学习C++编程的学生、从事C++开发的技术人员以及其他想要深入了解C++语言高级特性的开发者。 使用场景及目标:帮助读者掌握C++中的指针规则,预防潜在陷阱;介绍模板元编程的相关技术和优化方法;使读者理解新引入的标准库组件,提高程序性能;引导C++学习者按照有效的路径规划自己的技术栈发展路线。 阅读建议:对于指针部分的内容,应当结合实际代码样例反复实践,以便加深理解和记忆;在研究模板元编程时,要从简单的例子出发逐步建立复杂模型的理解能力,培养解决抽象问题的能力;而对于C++23带来的变化,则可以通过阅读官方文档并尝试最新标准特性来加深印象;针对求职准备,应结合个人兴趣和技术发展方向制定合理的学习计划,并注重积累高质量的实际项目经验。
JNA、JNI, Java两种不同调用DLL、SO动态库方式读写FM1208 CPU卡示例源码,包括初始化CPU卡、创建文件、修改文件密钥、读写文件数据等操作。支持Windows系统、支持龙芯Mips、LoongArch、海思麒麟鲲鹏飞腾Arm、海光兆芯x86_Amd64等架构平台的国产统信、麒麟等Linux系统编译运行,内有jna-4.5.0.jar包,vx13822155058 qq954486673
内容概要:本文全面介绍了Linux系统的各个方面,涵盖入门知识、基础操作、进阶技巧以及高级管理技术。首先概述了Linux的特点及其广泛的应用领域,并讲解了Linux环境的搭建方法(如使用虚拟机安装CentOS),随后深入剖析了一系列常用命令和快捷键,涉及文件系统管理、用户和权限设置、进程和磁盘管理等内容。此外,还讨论了服务管理的相关指令(如nohup、systemctl)以及日志记录和轮替的最佳实践。这不仅为初学者提供了一个完整的知识框架,也为中级和高级用户提供深入理解和优化系统的方法。 适合人群:适用于有意深入了解Linux系统的学生和专业技术人员,特别是需要掌握服务器运维技能的人群。 使用场景及目标:本文适合初次接触Linux的操作员了解基本概念;也适合作为培训教材,指导学生逐步掌握各项技能。对于有一定经验的技术人员而言,则可以帮助他们巩固基础知识,并探索更多的系统维护和优化可能性。 阅读建议:建议按照文章结构循序渐进地学习相关内容,尤其是结合实际练习操作来加深记忆和理解。遇到复杂的问题时可以通过查阅官方文档或在线资源获得更多帮助。
内容概要:本文档详细介绍了企业在规范运维部门绩效管理过程中所建立的一套绩效考核制度。首先阐述了绩效考核制度设立的目的为确保绩效目标得以衡量与追踪,并确保员工与公司共同成长与发展。其次规定范围覆盖公司所有在职员工,并详细列明了从总经理到一线员工在内的不同角色的职责范围。再则描述了完整的绩效工作流程,即从年初开始制定绩效管理活动计划,经过与每个员工制定具体的绩效目标,在绩效考核周期之内对员工的工作进展和问题解决状况进行持续的监督跟进,并且在每周期结束前完成员工绩效的评估和反馈工作,同时利用绩效评估结果对员工作出保留或异动的相关决定,最后进行绩效管理活动总结以为来年提供参考。此外还强调了整个过程中必要的相关文档保存,如员工绩效评估表。 适合人群:企业管理层,HR专业人士及对现代企业内部运营管理感兴趣的读者。 使用场景及目标:①管理层需要理解如何规范和有效实施企业内部绩效管理,以提高公司运营效率和员工满意度;②HR人士可以通过参考此文档来优化自己公司的绩效管理体系;③对企业和组织管理有兴趣的研究员亦可借鉴。 阅读建议:读者应重点关注各个层级管理者和员工在整个流程中的角色和责任,以期更好地理解
基于MATLAB Simulink的LCL三相并网逆变器仿真模型:采用交流电流内环PR控制与SVPWM-PWM波控制研究,基于MATLAB Simulink的LCL三相并网逆变器仿真模型研究:采用比例谐振控制与交流SVPWM控制策略及参考文献解析,LCL_Three_Phase_inverter:基于MATLAB Simulink的LCL三相并网逆变器仿真模型,交流电流内环才用PR(比例谐振)控制,PWM波采用SVPWM控制,附带对应的参考文献。 仿真条件:MATLAB Simulink R2015b,前如需转成低版本格式请提前告知,谢谢。 ,LCL三相并网逆变器; LCL_Three_Phase_inverter; MATLAB Simulink; PR控制; SVPWM控制; 仿真模型; 参考文献; 仿真条件; R2015b版本,基于PR控制与SVPWM的LCL三相并网逆变器Simulink仿真模型研究
内点法求解标准节点系统最优潮流计算的稳定程序,注释清晰,通用性强,内点法用于标准节点系统的最优潮流计算:稳定、通用且注释清晰的matlab程序,内点法最优潮流程序matlab 采用内点法对14标准节点系统进行最优潮流计算,程序运行稳定,注释清楚,通用性强 ,内点法; 最优潮流程序; MATLAB; 14标准节点系统; 稳定运行; 清晰注释; 通用性强。,Matlab内点法最优潮流程序:稳定高效,通用性强,适用于14节点系统