Shopify是一家提供电商网店解决方案的公司,目前服务的网店数有10万家以上(Tesla 也是它的用户)。网站主要的框架是Ruby on Rails,1700个内核和6TB RAM,每秒可以响应8000个用户请求。为了更易扩展和管理业务,Shopify开始使用Docker和CoreOS技术,Shopify软件工程师Graeme Johnson将撰写一系列文章分享其经验,本文是系列中的第二篇,重点介绍了Shopify在生产环境中是如何使用容器技术。
这是第一篇召集群里(230365411)的同学们一起翻译的文章,谢谢大家的义务帮助,本次参与翻译的同学包括王大隆、孙宏亮、吴京润、吴方洲、周敬滨、赵文举。我们也欢迎你的加入!
以下为翻译原文:
为什么使用容器技术?
在我们深入到构建容器的机制之前,首先讨论一下这么做的动机。容器在数据中心拥有的潜能就像游戏机之于游戏。在PC游戏的初期,通常在你开始玩一款游戏之前,都需要安装视频或音频驱动。然而,游戏机提供了不同的体验,与Docker很类似:
可预见性:游戏带它自带游戏,随时可运行,不需要下载或更新;
迅速:游戏带采用只读存储器,从而获得了如同闪电的速度;
简单:游戏带是健壮的,并且很大程度上拥有儿童防护措施,它们是真正的即插即用;
可预见性、迅速、简单,在扩展规模方面都是好东西。 Docker容器提供了构建模块,使我们的数据中心更容易运行、更适合使应用成为独立模块,随时就绪的单元就像是游戏机上的游戏带。
引导程序
为了努力实现容器化,你需要同时具备开发和运维技能。首先,与你的运维团队交流,你需要确信你的容器能够完全复制于你的生产环境。如果你运行在OSX(或windows)桌面操作系统,但部署在Linux上,使用一个虚拟机(比如Vagrant)作为本地测试环境。第一步,更新你的操作系统和安装支持包。挑选一个基础镜像匹配你的生产环境(我们使用Ubuntu14.01),不能出差错——你不会想处理容器化和操作系统/包在同一时间升级所带来的麻烦。
选择容器类型
在容器类型方面Docker为你提供了足够的选择空间,从一个单进程的“瘦”容器到一个让你觉得类似于传统虚拟机的“胖”容器(例如,Phusion)。
我们选择去遵循“廋”容器方式,从容器内部去除一些无关的组件。虽然从两种方式作出选择是困难的,但是我们更青睐于小的那种,因为容器简单化会消耗更少的CPU和内存。这种方式被详细的说明在 Docker blog中。
环境配置
在生产环境中,我们使用Chef这一部署工具来管理系统的各个节点。这样的话,我们可以轻松做到在一个容器之中运行Chef,然而我们并不希望某些服务在每一个容器中都运行,比如:日志的索引服务,运行状态采集服务等。而Chef的使用无疑使得很多服务都会重复安装在不必要的容器中,由于无法忍受以上徒劳的重复工作,我们选择在每一台运行Docker的宿主机上共享同一份这些服务的副本。
如何将容器做得轻量级,关键是:将Chef部署工具的运行脚本转换为一个Dockerfile(这部分内容,我们后来将其替换为一个自定义的Docker build流程,之后的文章会涉及)。Docker的诞生,可以说是天赐良机,使运维人员评估内部的生产环境,并回顾以及整理整个系统生命周期中到底需要什么。在这一环节中,对于系统的的割舍请尽量无情,同时也要保证在code review过程中尽量做到谨慎。
其实,整个过程,并没有听起来那么艰难。最终,我们团队以一个125行Dockerfile的形式告终,而该Dockerfile则是定义了在Shopify上所有容器需要共享的基础镜像。该基础镜像包含了25 个包,这些包中包括跨度较大的编程语言运行时(Ruby、Python和Node),还有多种开发工具(Git、Vim、build-essential和Go),也有一些需要共享使用的库文件。同时,基础镜像中还包含了一系列工具脚本用以任务的运行,比如通过调整参数来启动Ruby,或者向Datadog发送监控数据等。
在以上环境下,我们的应用可以很随意在这个基础镜像上添加自身的特定需求。尽管如此,我们最大的应用也仅仅是添加了一些操作系统的依赖包,所以总体来讲,我们的基础镜像还是相对简洁精干的。
容器的100定律
在选择将何种服务容器化时,可以首先假设你有100个小容器运行在同一个host上,然后想一下是否真的有必要运行100个服务的副本,还是大家共享一个单独的host更好。
以下是一些实例说明我们如何根据100定律来决定如何使用容器的:
日志索引:日志对于诊断错误至关重要,尤其在容器退出,文件系统消失后显得更为重要。我们特意避免了修改应用程序的日志行为(比如强制它们重新定向到系统日志),并且允许它们继续写日志到文件系统。运行100个日志代理似乎是错误的做法,所以我们创建一个后台程序去处理以下重要任务:
·运行在host端,并订阅Docker event;
·在容器启动时,配置日志索引来监视容器;
·容器销毁时,删除索引指令。
·为了确保容器退出时,所有的日志都被编入索引,你可能需要稍微延迟容器的销毁。
统计:Shopify在几个级别(系统,中间件和应用程序)上都生成了运行时统计,得到的结果通过代理或应用程序代码转述。
·许多我们的统计结果可以通过StasD传输,幸运的是我们可以配置Datadog的host端去接收容器传来的流量,通过适当的配置,就可以将StasD接收的地址传给容器;
·由于容器从本质上来说就是进程树,所以一个host端的系统监控代理可以看到容器边界共享一个单一的系统监控也是自由的;
·从一个更加以容器为中心的角度出发,来考虑Docker和Datadog的集成,会添加Docker metrics到host端的监控代理;
·应用级别的metrics大多数运行得还可以,它们或者通过StasD发送事件,或者直接和其它服务对话。为一个容器指定名字很重要,这样一来metrics也更容易读。
Kafka:我们使用Kafka来实时处理从Shopify堆栈到合作伙伴的事件。我们使用Ruby on Rail代码来发布Kafka事件,生成信息,然后放到SysV消息队列。一个Go语言写的后台程序会在队列中取出消息发送给Kafka。这减少了Ruby进程的时间,我们也能更好地应对Kafka服务器的事故。有一点不好的是,SysV消息队列是IPC namespace的一部分,所以我们不能用来连接container:host。我们的解决方案是在host上添加一个socket端,用来将消息放到SysV队列。
100定律的使用需要一定的灵活性。一些情况下,仅仅需要写一下组件的“黏合器”,也可以通过配置来达到目的。最终,你应该获得一个容器,内含你的应用程序运行所需的东西,以及一个提供了Docker托管和共享服务的主机环境。
将你的应用容器化
随着环境的就绪,我们可以把注意力转到程序的容器化上来。
我们更倾向于thin container能准确地做一件事。例如一个unicorn(Unicorn是一个Unix和局域网/本地主机优化的HTTP服务器)master和工作线程服务web请求,或者一个Resque(Resque使用Redis创建后台任务,存储进队列,并随后执行。它是Rails下最常用的后台任务管理工具之一)工作线程服务一个特定的队列。thin container允许细粒度的缩放比例(一般是指远程方法调用的接口的颗粒大小),以满足需求。例如,我们可以增加检查垃圾邮件攻击响应的 Resque工作线程的数目。
我们发现采取一些标准约定对于在容器中的代码布局会有用处:
·应用程序总是root在容器内部的/app下;
·应用程序通常通过单个端口发布服务;
我们还确立了一些容器化git repo(repo封装了对git的操作)的约定:
·/container/files 拥有一个在其建立时就被直接复制进容器的文件树,举个例子,请求 Splunk 索引的应用程序日志,它添加/container/files/etc/splunk.d/inputs.conf 文件进你的git repo就足够了(控制日志索引的责任转移到开发者,这是一个微妙而重大的转变,过去这都是运维管理员的工作);
·/container/compile是一个 shell 脚本,编译您的应用程序,并生成一个随时可运行的容器。建立此文件并适应您的应用程序,是最复杂的地方;
·/container/roles.json保存命令行以机器可读的形式用来运行该工作负载。很多我们的应用程序以多个角色,运行相同代码库,一些处理 web 流量同时处理后台任务。这部分的灵感来自 Heroku 的 procfile。以下是一个示例的roles.json文件:
我们用一个简单的Makefile驱动建立,也可以本地运行。我们的 Dockerfile 看起来像这样:取消编译阶段的目标是产生一个是即刻准备运行的容器。Docker关键的优势之一就是在容器启动时超级快速启动而不被损坏因为额外的工作。为了实现这一目标您需要了解您的整个部署过程。 举几个例子:
·我们正在使用Capistrano(Capistrano是一种在多台服务器上运行脚本的开源工具,它主要用于部署web应用)将代码部署到机器,并且asset编译以前发生的事情作为部署的一部分。通过移动资产编译到容器里生成,部署新代码由更简单、快几分钟。
·我们的unicorn 主机启动来从table 模型中获取数据(Table 对象代表一个 HTML 表格。)不只这是缓慢的,而且我们更小的容器大小意味着将需要更多的数据库连接。另一方面,它是可能做到这一点(获取数据)的在容器建立的时候,以加速启动。
在本例中,编译阶段包括以下的逻辑步骤:
·bundle install
·asset compile
·database setup
为了保持这一公告(邮件)的大小合理,我们简化了一些细节。密钥管理是一个主要的细节,我们还没有在这里讨论。不要将其登记入源码管理。我们已经获取了用来加密密钥的代码,致力于该主题的博客帖子很快就会来了。
调试和细节
运行在容器中的应用程序和容器之外的表现绝大多数情况是相同的。此外,你的大多数调试工具(例如:strace,gdb,/proc/filesystem)是运行在Docker所在的host上。还有大家熟悉的工具nsenter或nsinit,可以用他们挂载到一个运行中的容器里进行调试。
docker exec,作为docker 1.3.0版本中提供的新工具,能够被用来向运行的容器中注入进程。但是,不幸的是,如果你注入进程需要root权限,你还是需要通过nsenter,有些地方的情况可能不会像人们预料的那样。
进程分层
尽管我们运行轻量级的容器,仍然需要初始化进程(pid=1)从而与监控工具,后台管理,服务发现等做到紧密集成,也能给我们细粒度的健康监测。
除了初始化进程,我们在每个容器中添加了一个ppidshim进程(pid=2),应用程序进程的pid=3。由于ppdishim进程的存在,应用程序没有直接继承自初始化进程,避免它们以为自己是后台守护进程,造成错误的后果。
最终的进程层次是这样的:
Signals
如果你在使用容器技术,你很可能会修改现有的运行脚本或写一套新的脚本,其中包含了docker run的调用。默认的情况下,docker run会代理signal到你的应用程序,所以你必须理解应用程序是如何解读signal的。
标准的UNIX做法是发送SIGTERM去请求有序地关闭一个进程。为了确保应用程序遵守这个惯例,Resque使用SIGQUIT来有序地关闭进程,SIGTERM来紧急关闭进程。幸运的是,Resque可以被配置使用SIGTERM来优雅地关闭进程。
Hostnames
我们选择容器名称来描述工作负载(例如 unicorn-1, resque-2),并结合这些主机名来进行简单追溯。最终的结果会是这样:unicorn-1.server2.shopify.com.我们使用Docker的主机名标签将结果传入容器中,这使大多数应用程序报告出正确的值。一些程序(Ruby)询问主机名来得到缩略名(unicorn-1),而不用询问预期的FQDN。由于Docker管理着/etc/resolv.conf 文件,我们当前版本不允许任意变更,所以我们通过LD_PRELOAD,重写了gethostname()和uname()的方法,并注入到library中。最终结果会是,监控工具发布我们想要得到的主机名却不用去更改应用程序代码。
注册和部署
我们发现构建容器的过程中复制‘bare metal’的行为相当于一个不断调试的过程。如果你是理智的的,你肯定想自动化的去构建容器。
为了每个人都能push,我们使用github commit hook去触发一个容器的构建,构建过程中我们会提交状态日志来判定是否构建成功。我们使用git提交SHA到容器的“docker tag”,所以你能准确的看到什么样的代码版本被包含在容器中。为了更容易被脚本调试和使用,我们同样也把SHA放到容器里的一个文件中(/app/REVISION)。
一旦你的构建是正常的,你会想把容器push到一个中央的注册表仓库。为了提高部署速度和减少外部依赖我们选择运行数据中心中自己的库。 我们在Nginx反向代理(其中缓存了GET请求的内容)背后运行多个标准Python注册表的副本,如下图所示:
当多个Docker主机请求相同的镜像时,我们发现大型网络接口(10 Gbps)和反向代理,在解决”thundering herd“这样的代码部署相关的问题是很有效的。代理方法还允许我们运行多种类型的库,并在发生故障的情况下,提供自动故障转移。
如果遵循这个蓝图,你可以自动化去构建容器,并且安全地把容器存储在一个中央仓库注册表中,这些都可以融入你的部署过程。
来源:http://www.shopify.com/ 作者:Graeme Johnson
分享到:
相关推荐
毕业设计选题 -未来生鲜运输车设计.pptx
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
2025年中国生成式AI大会PPT(4-1)
内容概要:本文详细介绍了基于Simulink平台构建无刷直流电机(BLDC)双闭环调速系统的全过程。首先阐述了双闭环控制系统的基本架构,即外层速度环和内层电流环的工作原理及其相互关系。接着深入探讨了PWM生成模块的设计,特别是占空比计算方法的选择以及三角波频率的设定。文中还提供了详细的电机参数设置指导,如转动惯量、电感、电阻等,并强调了参数选择对系统性能的影响。此外,针对PI控制器的参数整定给出了具体的公式和经验值,同时分享了一些实用的调试技巧,如避免转速超调、处理启动抖动等问题的方法。最后,通过仿真实验展示了系统的稳定性和鲁棒性,验证了所提出方法的有效性。 适用人群:从事电机控制研究的技术人员、自动化工程领域的研究生及科研工作者。 使用场景及目标:适用于需要深入了解和掌握无刷直流电机双闭环调速系统设计与优化的人群。主要目标是帮助读者学会利用Simulink进行BLDC电机控制系统的建模、仿真和参数优化,从而提高系统的稳定性和响应速度。 其他说明:文章不仅提供了理论知识,还包括了许多实践经验和技术细节,有助于读者更好地理解和应用相关技术。
内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。
内容概要:本文详细介绍了如何使用Verilog在FPGA上实现IIC(Inter-Integrated Circuit)主从机驱动。主要内容包括从机和主机的设计,特别是状态机的实现、寄存器读取、时钟分频策略、SDA线的三态控制等关键技术。文中还提供了详细的代码片段,展示了从机地址匹配逻辑、主机时钟生成逻辑、顶层模块的连接方法以及仿真实验的具体步骤。此外,文章讨论了一些常见的调试问题,如总线竞争、时序不匹配等,并给出了相应的解决方案。 适合人群:具备一定FPGA开发基础的技术人员,尤其是对IIC协议感兴趣的嵌入式系统开发者。 使用场景及目标:适用于需要在FPGA平台上实现高效、可靠的IIC通信的应用场景。主要目标是帮助读者掌握IIC协议的工作原理,能够独立完成IIC主从机系统的开发和调试。 其他说明:文章不仅提供了理论讲解,还包括了大量的实战经验和代码实例,有助于读者更好地理解和应用所学知识。同时,文章还提供了一个思考题,引导读者进一步探索多主设备仲裁机制的设计思路。
内容概要:本文介绍了一款基于C#开发的拖拽式Halcon可视化抓边、抓圆控件,旨在简化机器视觉项目中的测量任务。该控件通过拖拽操作即可快速生成测量区域,自动完成边缘坐标提取,并提供实时反馈。文中详细描述了控件的工作原理和技术细节,如坐标系转换、卡尺生成、边缘检测算法封装以及动态参数调试等功能。此外,还讨论了一些常见问题及其解决方案,如坐标系差异、内存管理等。 适合人群:从事机器视觉开发的技术人员,尤其是熟悉C#和Halcon的开发者。 使用场景及目标:适用于需要频繁进行边缘和圆形特征测量的工业自动化项目,能够显著提高测量效率并减少编码工作量。主要目标是将复杂的测量任务转化为简单的拖拽操作,使非专业人员也能轻松完成测量配置。 其他说明:该控件已开源发布在GitHub上,提供了完整的源代码和详细的使用指南。未来计划扩展更多高级功能,如自动路径规划和亚像素级齿轮齿距检测等。
内容概要:本文详细介绍了西门子200Smart PLC与维纶触摸屏在某疫苗车间控制系统的具体应用,涵盖配液、发酵、纯化及CIP清洗四个主要工艺环节。文中不仅展示了具体的编程代码和技术细节,还分享了许多实战经验和调试技巧。例如,在配液罐中,通过模拟量处理确保温度和液位的精确控制;发酵罐部分,着重讨论了PID参数整定和USS通讯控制变频器的方法;纯化过程中,强调了双PID串级控制的应用;CIP清洗环节,则涉及复杂的定时器逻辑和阀门联锁机制。此外,文章还提到了一些常见的陷阱及其解决方案,如通讯干扰、状态机切换等问题。 适合人群:具有一定PLC编程基础的技术人员,尤其是从事工业自动化领域的工程师。 使用场景及目标:适用于需要深入了解PLC与触摸屏集成控制系统的工程师,帮助他们在实际项目中更好地理解和应用相关技术和方法,提高系统的稳定性和可靠性。 其他说明:文章提供了大量实战经验和代码片段,有助于读者快速掌握关键技术点,并避免常见错误。同时,文中提到的一些优化措施和调试技巧对提升系统性能非常有帮助。
计算机网络课程的结课设计是使用思科模拟器搭建一个中小型校园网,当时花了几天时间查阅相关博客总算是做出来了,现在免费上传CSDN,希望小伙伴们能给博客一套三连支持
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
内容概要:本文介绍了一种先进的综合能源系统优化调度模型,该模型将风电、光伏、光热发电等新能源与燃气轮机、燃气锅炉等传统能源设备相结合,利用信息间隙决策(IGDT)处理不确定性。模型中引入了P2G(电转气)装置和碳捕集技术,实现了碳经济闭环。通过多能转换和储能系统的协同调度,提高了系统的灵活性和鲁棒性。文中详细介绍了模型的关键组件和技术实现,包括IGDT的鲁棒性参数设置、P2G与碳捕集的协同控制、储能系统的三维协同调度等。此外,模型展示了在极端天气和负荷波动下的优异表现,显著降低了碳排放成本并提高了能源利用效率。 适合人群:从事能源系统优化、电力调度、碳交易等相关领域的研究人员和工程师。 使用场景及目标:适用于需要处理多种能源形式和不确定性的综合能源系统调度场景。主要目标是提高系统的灵活性、鲁棒性和经济效益,减少碳排放。 其他说明:模型具有良好的扩展性,可以通过修改配置文件轻松集成新的能源设备。代码中包含了详细的注释和公式推导,便于理解和进一步改进。
毕业设计的论文撰写、终期答辩相关的资源
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
内容概要:本文档作为建模大赛的入门指南,详细介绍了建模大赛的概念、类型、竞赛流程、核心步骤与技巧,并提供实战案例解析。文档首先概述了建模大赛,指出其以数学、计算机技术为核心,主要分为数学建模、3D建模和AI大模型竞赛三类。接着深入解析了数学建模竞赛,涵盖组队策略(如三人分别负责建模、编程、论文写作)、时间安排(72小时内完成全流程)以及问题分析、模型建立、编程实现和论文撰写的要点。文中还提供了物流路径优化的实战案例,展示了如何将实际问题转化为图论问题并采用Dijkstra或蚁群算法求解。最后,文档推荐了不同类型建模的学习资源与工具,并给出了新手避坑建议,如避免过度复杂化模型、重视可视化呈现等。; 适合人群:对建模大赛感兴趣的初学者,特别是高校学生及希望参与数学建模竞赛的新手。; 使用场景及目标:①了解建模大赛的基本概念和分类;②掌握数学建模竞赛的具体流程与分工;③学习如何将实际问题转化为数学模型并求解;④获取实战经验和常见错误规避方法。; 其他说明:文档不仅提供了理论知识,还结合具体实例和代码片段帮助读者更好地理解和实践建模过程。建议新手从中小型赛事开始积累经验,逐步提升技能水平。
该资源为protobuf-6.30.1-cp310-abi3-win32.whl,欢迎下载使用哦!
内容概要:本文档详细介绍了基于Linux系统的大数据环境搭建流程,涵盖从虚拟机创建到集群建立的全过程。首先,通过一系列步骤创建并配置虚拟机,包括设置IP地址、安装MySQL数据库等操作。接着,重点讲解了Ambari的安装与配置,涉及关闭防火墙、设置免密登录、安装时间同步服务(ntp)、HTTP服务以及配置YUM源等关键环节。最后,完成了Ambari数据库的创建、JDK的安装、Ambari server和agent的部署,并指导用户创建集群。整个过程中还提供了针对可能出现的问题及其解决方案,确保各组件顺利安装与配置。 适合人群:具有Linux基础操作技能的数据工程师或运维人员,尤其是那些需要构建和管理大数据平台的专业人士。 使用场景及目标:适用于希望快速搭建稳定可靠的大数据平台的企业或个人开发者。通过本指南可以掌握如何利用Ambari工具自动化部署Hadoop生态系统中的各个组件,从而提高工作效率,降低维护成本。 其他说明:文档中包含了大量具体的命令行指令和配置细节,建议读者按照顺序逐步操作,并注意记录下重要的参数值以便后续参考。此外,在遇到问题时可参照提供的解决方案进行排查,必要时查阅官方文档获取更多信息。
内容概要:本文详细介绍了如何在MATLAB R2018A中使用最小均方(LMS)自适应滤波算法对一维时间序列信号进行降噪处理,特别是针对心电图(ECG)信号的应用。首先,通过生成模拟的ECG信号并加入随机噪声,创建了一个带有噪声的时间序列。然后,实现了LMS算法的核心部分,包括滤波器阶数、步长参数的选择以及权重更新规则的设计。文中还提供了详细的代码示例,展示了如何构建和训练自适应滤波器,并通过图形化方式比较了原始信号、加噪信号与经过LMS处理后的降噪信号之间的差异。此外,作者分享了一些实用的经验和技术要点,如参数选择的影响、误差曲线的解读等。 适用人群:适用于具有一定MATLAB编程基础并对信号处理感兴趣的科研人员、工程师或学生。 使用场景及目标:本教程旨在帮助读者掌握LMS算法的基本原理及其在实际项目中的应用方法,特别是在生物医学工程、机械故障诊断等领域中处理含噪信号的任务。同时,也为进一步探索其他类型的自适应滤波技术和扩展到不同的信号处理任务奠定了基础。 其他说明:尽管LMS算法在处理平稳噪声方面表现出色,但在面对突发性的强干扰时仍存在一定局限性。因此,在某些特殊场合下,可能需要与其他滤波技术相结合以获得更好的效果。
内容概要:本文详细介绍了基于TMS320F2812 DSP芯片的光伏并网逆变器设计方案,涵盖了主电路架构、控制算法、锁相环实现、环流抑制等多个关键技术点。首先,文中阐述了双级式结构的主电路设计,前级Boost升压将光伏板输出电压提升至约600V,后级采用三电平NPC拓扑的IGBT桥进行逆变。接着,深入探讨了核心控制算法,如电流PI调节器、锁相环(SOFGI)、环流抑制等,并提供了详细的MATLAB仿真模型和DSP代码实现。此外,还特别强调了PWM死区时间配置、ADC采样时序等问题的实际解决方案。最终,通过实验验证,该方案实现了THD小于3%,MPPT效率达98.7%,并有效降低了并联环流。 适合人群:从事光伏并网逆变器开发的电力电子工程师和技术研究人员。 使用场景及目标:适用于光伏并网逆变器的研发阶段,帮助工程师理解和实现高效稳定的逆变器控制系统,提高系统的性能指标,减少开发过程中常见的错误。 其他说明:文中提供的MATLAB仿真模型和DSP代码可以作为实际项目开发的重要参考资料,有助于缩短开发周期,提高成功率。
内容概要:本文详细解析了三菱FX3U PLC在六轴自动包装机中的应用,涵盖硬件配置、程序框架、伺服定位控制、手自动切换逻辑、功能块应用以及报警处理等方面。硬件方面,采用FX3U-48MT主模块自带三轴脉冲输出,配合三个FX3UG-1PG模块扩展定位功能,使用六个MR-JE-20A伺服驱动器和16点输入扩展模块进行传感器采集。程序框架主要由初始化、模式切换、六轴控制和异常处理组成。伺服定位使用DRVA指令实现双速定位模式,手自动切换逻辑通过功能块封装,确保模式切换顺畅。报警处理模块则利用矩阵扫描方式压缩报警信号,提高IO利用率。此外,程序还包括状态监控设计和原点回归等功能。 适合人群:具备一定PLC编程基础,从事自动化控制领域的工程师和技术人员。 使用场景及目标:适用于六轴自动包装机的设计与调试,帮助工程师理解和掌握三菱FX3U PLC在包装机械中的具体应用,提升系统的可靠性和效率。 其他说明:文中提供了详细的代码示例和注意事项,有助于新手避免常见错误并优化程序性能。