The autoregressive model is one of a group of linear prediction formulas that attempt to predict an output y[n] of a system based on the previous outputs ( y[n-1],y[n-2]...) and inputs ( x[n], x[n-1], x[n-2]...).
Deriving the linear prediction model involves determining the coeffiecients a1,a2,.. and b0,b1,b2,... in the equation:
ye[n] (estimated) = a1*y[n-1] + a2*y[n-2]... + b0*x[n] + b1*x[n-1] + ...
Note the REMARKABLE similarity between the prediction formula and the difference equation used to describe discrete linear time invariant systems. Calculating a set of coefficients that give a good prediciton ye[n] is tantamount to determining what the system is, within the constraints of the order chosen.
A model which depends only on the previous outputs of the system is called an autoregressive model (AR), while a model which depends only on the inputs to the system is called a moving average model (MA), and of course a model based on both inputs and outputs is an autoregressive-moving-average model (ARMA). Note that by definition, the AR model has only poles while the MA model has only zeros.
Several methods and algorithms exist for calculating the coefficients of the AR model, all of which are implemented by the matlab command 'ar'. We use the default setting ('forward-backward') to calculate the AR model for the vocal tract, with the following justifications:
The simplest model for the vocal tract, consisting of linked cylindrical tubes, produces an all-pole transfer function.
Only the outputs of the system are available to us.
Note that the AR model is based on frequency-domain analysis and should be windowed. (We use the hamming.)
The order of the system: We are using the AR model to determine the characteristics of the vocal system and from this system model evaluate the formants, or resonant frequencies of the vocal system.(i.e. the peaks in the frequency response) One conjugate pole pair is required to produce each formant, and one formant is expected in each 1kHz band or so. Therefore the order of the model is a function of the sampling frequency: fs/2 + 2 (the added 2 being the 'empirically determined adjustment factor')
All our autoregressive matlab techniques are in the function formants.m.(or see the attachement)
There is TONS of material about autoregressive models. Check out your library...
From: http://www.owlnet.rice.edu/~elec431/projects96/digitalbb/autoregression.html
分享到:
相关推荐
阈值自回归(Threshold Autoregressive,简称TAR)模型是由Tong在1978年引入的一种模型,用于分析那些表现出非线性动态特性的复杂时间序列。这类模型特别适用于处理存在极限周期或具有多个稳定状态的时间序列,能够...
因此,非自回归模型(Non-autoregressive Models)的研究受到了广泛关注,因为它们支持并行生成,可以提高效率。DDPMs在某些情况下以较少的步骤取得了与自回归模型相当的结果,这得益于其反向去噪学习机制。 文章中...
大语言模型的预训练架构可以分为三类:自编码模型(Autoencoding Models)、自回归模型(Autoregressive Models)和编码器-解码器模型(Encoder-Decoder Models)。其中,BERT 是一种基于自编码模型的预训练架构,...
- 自回归模型(Autoregressive Models),包括一阶自回归(AR(1))模型和高阶自回归模型(AR(p))。 4. 自回归时间序列模型(Autoregressive Time-Series Models) - 均值回复水平(mean reverting level)的计算。...
1. **Scaling Autoregressive Models for Content-Rich Text-to-Image Generation.pdf**:这篇文档可能探讨了如何扩展自回归模型来生成富含内容的图像,这在文本到图像生成领域有着广泛的应用,例如AI艺术创作或辅助...
变形方法主要涉及流模型(Flow-based Models)和自回归模型(Autoregressive Models)。流模型利用可逆网络构建似然函数,简化计算,如常规流模型、变分流模型和可逆残差网络等。自回归模型则将目标函数分解为条件...
Stata中的空间计量模型主要包括空间自回归模型(Spatial Autoregressive Models, SAR)、空间滞后模型(Spatial Lag Models, SLR)、空间误差模型(Spatial Error Models, SEM)以及混合模型等。 1. **空间自回归...
- **Spatial Statistics**: Spatial statistics methods, such as geostatistics and spatial autoregressive models, are discussed. - **Network Analysis**: Network analysis techniques, including centrality ...
文章还探讨了更深层的生成模型,包括使用多个潜在变量进行推理和学习,增加生成模型表达力的替代方法,以及自回归模型(Autoregressive Models)等。自回归模型使用可逆变换,并具有可计算的雅可比行列式(tractable...
另一个值得一提的功能是空间自回归模型(Spatial Autoregressive Models)。随着地理信息系统(GIS)的发展,空间数据分析变得越来越重要。Stata 15提供了实现空间自回归、空间误差模型和空间杜宾模型等的空间统计...
扩散模型可以deliver竞争性的样本质量,rivalling autoregressive models在音频合成任务中的性能,同时在图像生成任务中也取得了不俗的成绩。 然而,扩散模型的一个缺点是它可能生成具有低质量的样本,特别是在高...
吴恩达在这一部分可能会介绍基本的概念,如自回归模型(Autoregressive Models)和条件随机场(Conditional Random Fields),以及如何利用这些模型进行序列预测。 课程可能涵盖的主要内容包括: 1. **循环神经...
Surface roughness simulation using autoregressive models. _Journal of Tribology_, 117(1), 161-167. 3. Bhushan, B. (1999). _Handbook of micro/nano tribology_. CRC press. 以上文献仅为示例,并未出现在...
7. 自回归模型(Autoregressive Models): 自回归模型是一种统计模型,它通过使用之前的数据点来预测后续的数据点。在时间序列分析中非常常用,它假定当前的输出仅依赖于之前有限步的输入。在深度学习中,自回归模型...