有一个格式化的数据文件,用\t分割列,第2列为产品名称。现在需求把数据文件根据产品名切分为多个文件,使用MapReduce程序要如何实现?
原始文件:
[root@localhost opt]# cat aprData
1 a1 a111
2 a2 a211
3 a1 a112
4 a1 a112
5 a1 a112
6 a1 a112
7 a2 a112
8 a2 a112
9 a2 a112
10 a3 a113
思路:
1.用一个mapreduce程序找出所有产品名称:
1.1map<k2,v2>为<产品名称,null>
1.2reduce<k3,v3>为<产品名称,null>
实现:AprProduces类
[root@localhost opt]# hadoop jar apr-produces.jar /aprData /aprProduce-output
Warning: $HADOOP_HOME is deprecated.
16/05/01 15:00:12 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
16/05/01 15:00:12 INFO input.FileInputFormat: Total input paths to process : 1
16/05/01 15:00:12 INFO util.NativeCodeLoader: Loaded the native-hadoop library
16/05/01 15:00:12 WARN snappy.LoadSnappy: Snappy native library not loaded
16/05/01 15:00:13 INFO mapred.JobClient: Running job: job_201605010048_0020
16/05/01 15:00:14 INFO mapred.JobClient: map 0% reduce 0%
16/05/01 15:00:33 INFO mapred.JobClient: map 100% reduce 0%
16/05/01 15:00:45 INFO mapred.JobClient: map 100% reduce 100%
16/05/01 15:00:50 INFO mapred.JobClient: Job complete: job_201605010048_0020
16/05/01 15:00:50 INFO mapred.JobClient: Counters: 29
16/05/01 15:00:50 INFO mapred.JobClient: Map-Reduce Framework
16/05/01 15:00:50 INFO mapred.JobClient: Spilled Records=20
16/05/01 15:00:50 INFO mapred.JobClient: Map output materialized bytes=56
16/05/01 15:00:50 INFO mapred.JobClient: Reduce input records=10
16/05/01 15:00:50 INFO mapred.JobClient: Virtual memory (bytes) snapshot=3868389376
16/05/01 15:00:50 INFO mapred.JobClient: Map input records=10
16/05/01 15:00:50 INFO mapred.JobClient: SPLIT_RAW_BYTES=89
16/05/01 15:00:50 INFO mapred.JobClient: Map output bytes=30
16/05/01 15:00:50 INFO mapred.JobClient: Reduce shuffle bytes=56
16/05/01 15:00:50 INFO mapred.JobClient: Physical memory (bytes) snapshot=240697344
16/05/01 15:00:50 INFO mapred.JobClient: Reduce input groups=3
16/05/01 15:00:50 INFO mapred.JobClient: Combine output records=0
16/05/01 15:00:50 INFO mapred.JobClient: Reduce output records=3
16/05/01 15:00:50 INFO mapred.JobClient: Map output records=10
16/05/01 15:00:50 INFO mapred.JobClient: Combine input records=0
16/05/01 15:00:50 INFO mapred.JobClient: CPU time spent (ms)=1490
16/05/01 15:00:50 INFO mapred.JobClient: Total committed heap usage (bytes)=177016832
16/05/01 15:00:50 INFO mapred.JobClient: File Input Format Counters
16/05/01 15:00:50 INFO mapred.JobClient: Bytes Read=101
16/05/01 15:00:50 INFO mapred.JobClient: FileSystemCounters
16/05/01 15:00:50 INFO mapred.JobClient: HDFS_BYTES_READ=190
16/05/01 15:00:50 INFO mapred.JobClient: FILE_BYTES_WRITTEN=43049
16/05/01 15:00:50 INFO mapred.JobClient: FILE_BYTES_READ=56
16/05/01 15:00:50 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=9
16/05/01 15:00:50 INFO mapred.JobClient: Job Counters
16/05/01 15:00:50 INFO mapred.JobClient: Launched map tasks=1
16/05/01 15:00:50 INFO mapred.JobClient: Launched reduce tasks=1
16/05/01 15:00:50 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=11002
16/05/01 15:00:50 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
16/05/01 15:00:50 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=13561
16/05/01 15:00:50 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
16/05/01 15:00:50 INFO mapred.JobClient: Data-local map tasks=1
16/05/01 15:00:50 INFO mapred.JobClient: File Output Format Counters
16/05/01 15:00:50 INFO mapred.JobClient: Bytes Written=9
[root@localhost opt]# hadoop fs -cat /aprProduce-output/part-r-00000
Warning: $HADOOP_HOME is deprecated.
a1
a2
a3
2.再用一个mapreduce程序对文件进行切分:
2.1map<k2,v2>为<产品名称,line>
2.2reduce<k3,v3>为<line,null>
2.3自定义分区partition,读取第一个mapreduce程序的输出文件,组装成一个map<产品名称,index>,在partition中判断产品名称并返回下标,没有找到放在0下标中。
2.4设置taskNum(reduce的个数),taskNum应该和partition的个数一致.
3.5使用MultipleOutPuts类进行重命名输出文件,输出文件为 xxx-00001 等
实现:AprClassify类
[root@localhost opt]# hadoop jar apr-classify.jar /aprData /apr-output
Warning: $HADOOP_HOME is deprecated.
16/05/01 14:09:11 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
16/05/01 14:09:11 INFO input.FileInputFormat: Total input paths to process : 1
16/05/01 14:09:11 INFO util.NativeCodeLoader: Loaded the native-hadoop library
16/05/01 14:09:11 WARN snappy.LoadSnappy: Snappy native library not loaded
16/05/01 14:09:11 INFO mapred.JobClient: Running job: job_201605010048_0017
16/05/01 14:09:13 INFO mapred.JobClient: map 0% reduce 0%
16/05/01 14:09:29 INFO mapred.JobClient: map 100% reduce 0%
16/05/01 14:09:41 INFO mapred.JobClient: map 100% reduce 33%
16/05/01 14:09:44 INFO mapred.JobClient: map 100% reduce 66%
16/05/01 14:09:56 INFO mapred.JobClient: map 100% reduce 100%
16/05/01 14:10:01 INFO mapred.JobClient: Job complete: job_201605010048_0017
16/05/01 14:10:01 INFO mapred.JobClient: Counters: 29
16/05/01 14:10:01 INFO mapred.JobClient: Map-Reduce Framework
16/05/01 14:10:01 INFO mapred.JobClient: Spilled Records=20
16/05/01 14:10:01 INFO mapred.JobClient: Map output materialized bytes=169
16/05/01 14:10:01 INFO mapred.JobClient: Reduce input records=10
16/05/01 14:10:01 INFO mapred.JobClient: Virtual memory (bytes) snapshot=7754653696
16/05/01 14:10:01 INFO mapred.JobClient: Map input records=10
16/05/01 14:10:01 INFO mapred.JobClient: SPLIT_RAW_BYTES=89
16/05/01 14:10:01 INFO mapred.JobClient: Map output bytes=131
16/05/01 14:10:01 INFO mapred.JobClient: Reduce shuffle bytes=169
16/05/01 14:10:01 INFO mapred.JobClient: Physical memory (bytes) snapshot=387825664
16/05/01 14:10:01 INFO mapred.JobClient: Reduce input groups=3
16/05/01 14:10:01 INFO mapred.JobClient: Combine output records=0
16/05/01 14:10:01 INFO mapred.JobClient: Reduce output records=0
16/05/01 14:10:01 INFO mapred.JobClient: Map output records=10
16/05/01 14:10:01 INFO mapred.JobClient: Combine input records=0
16/05/01 14:10:01 INFO mapred.JobClient: CPU time spent (ms)=3950
16/05/01 14:10:01 INFO mapred.JobClient: Total committed heap usage (bytes)=209522688
16/05/01 14:10:01 INFO mapred.JobClient: File Input Format Counters
16/05/01 14:10:01 INFO mapred.JobClient: Bytes Read=101
16/05/01 14:10:01 INFO mapred.JobClient: FileSystemCounters
16/05/01 14:10:01 INFO mapred.JobClient: HDFS_BYTES_READ=199
16/05/01 14:10:01 INFO mapred.JobClient: FILE_BYTES_WRITTEN=86609
16/05/01 14:10:01 INFO mapred.JobClient: FILE_BYTES_READ=169
16/05/01 14:10:01 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=104
16/05/01 14:10:01 INFO mapred.JobClient: Job Counters
16/05/01 14:10:01 INFO mapred.JobClient: Launched map tasks=1
16/05/01 14:10:01 INFO mapred.JobClient: Launched reduce tasks=3
16/05/01 14:10:01 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=35295
16/05/01 14:10:01 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
16/05/01 14:10:01 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=13681
16/05/01 14:10:01 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
16/05/01 14:10:01 INFO mapred.JobClient: Data-local map tasks=1
16/05/01 14:10:01 INFO mapred.JobClient: File Output Format Counters
16/05/01 14:10:01 INFO mapred.JobClient: Bytes Written=0
[root@localhost opt]# hadoop fs -ls /apr-output/
Warning: $HADOOP_HOME is deprecated.
Found 8 items
-rw-r--r-- 1 root supergroup 0 2016-05-01 14:09 /apr-output/_SUCCESS
drwxr-xr-x - root supergroup 0 2016-05-01 14:09 /apr-output/_logs
-rw-r--r-- 1 root supergroup 51 2016-05-01 14:09 /apr-output/a1-r-00000
-rw-r--r-- 1 root supergroup 41 2016-05-01 14:09 /apr-output/a2-r-00001
-rw-r--r-- 1 root supergroup 12 2016-05-01 14:09 /apr-output/a3-r-00002
-rw-r--r-- 1 root supergroup 0 2016-05-01 14:09 /apr-output/part-r-00000
-rw-r--r-- 1 root supergroup 0 2016-05-01 14:09 /apr-output/part-r-00001
-rw-r--r-- 1 root supergroup 0 2016-05-01 14:09 /apr-output/part-r-00002
[root@localhost opt]# hadoop fs -cat /apr-output/a1-r-00000
Warning: $HADOOP_HOME is deprecated.
1 a1 a111
3 a1 a112
4 a1 a112
5 a1 a112
6 a1 a112
[root@localhost opt]# hadoop fs -cat /apr-output/a2-r-00000
Warning: $HADOOP_HOME is deprecated.
cat: File does not exist: /apr-output/a2-r-00000
[root@localhost opt]# hadoop fs -cat /apr-output/a2-r-00001
Warning: $HADOOP_HOME is deprecated.
2 a2 a211
7 a2 a112
8 a2 a112
9 a2 a112
[root@localhost opt]# hadoop fs -cat /apr-output/a3-r-00002
Warning: $HADOOP_HOME is deprecated.
10 a3 a113
3.用hdfs对文件进行批量复制,重命名并转移产品数据文件到指定目录
实现:RenameApr类
[root@localhost opt]# hadoop fs -ls /aprProduces
Warning: $HADOOP_HOME is deprecated.
Found 3 items
-rw-r--r-- 3 yehao supergroup 51 2016-05-01 14:37 /aprProduces/a1
-rw-r--r-- 3 yehao supergroup 41 2016-05-01 14:37 /aprProduces/a2
-rw-r--r-- 3 yehao supergroup 12 2016-05-01 14:37 /aprProduces/a3
[root@localhost opt]# hadoop fs -cat /aprProduces/a1
Warning: $HADOOP_HOME is deprecated.
1 a1 a111
3 a1 a112
4 a1 a112
5 a1 a112
6 a1 a112
[root@localhost opt]# hadoop fs -cat /aprProduces/a2
Warning: $HADOOP_HOME is deprecated.
2 a2 a211
7 a2 a112
8 a2 a112
9 a2 a112
[root@localhost opt]# hadoop fs -cat /aprProduces/a3
Warning: $HADOOP_HOME is deprecated.
10 a3 a113
代码部分:
1.com.huawei.AprClassify
package com; import java.io.IOException; import java.util.Map; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs; public class AprClassify { private static int taskNum = HdfsUtils.getMapSize(); public static void main(String[] args) throws Exception { Job job = new Job(new Configuration(), AprClassify.class.getSimpleName()); job.setJarByClass(AprClassify.class); job.setMapperClass(AprClassifyMap.class); job.setReducerClass(AprClassifyReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); job.setPartitionerClass(AprClassifyPartitioner.class); job.setNumReduceTasks(taskNum+1); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } } class AprClassifyReducer extends Reducer<Text, Text, Text, NullWritable>{ private MultipleOutputs<Text, NullWritable> outputs; protected void setup(Context context) throws IOException, InterruptedException { outputs = new MultipleOutputs<Text, NullWritable>(context); } @Override protected void reduce(Text k2, Iterable<Text> v2s, Reducer<Text, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException { String st = ""; for (Text text : v2s) { st += text.toString() +"\n"; } Text k3 = new Text(st); outputs.write(k3, NullWritable.get(), k2.toString()); } protected void cleanup(Context context) throws IOException, InterruptedException { outputs.close(); } } class AprClassifyMap extends Mapper<LongWritable, Text, Text, Text>{ Text k2 = new Text(); @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context) throws IOException, InterruptedException { String line = value.toString(); String[] splited = line.split("\t"); k2.set(splited[1]); System.out.println(context); System.out.println(k2); System.out.println(value); context.write(k2, value); } } class AprClassifyPartitioner extends Partitioner<Text, Text> { private static Map<String, Integer> map = HdfsUtils.getMap(); @Override public int getPartition(Text key, Text value, int numPartitions) { if(map.get(key.toString()) == null){ return 0; } return map.get(key.toString()); } }
2.com.huawei.HdfsUtils
package com.huawei; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.URI; import java.net.URISyntaxException; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; public class HdfsUtils { private static FileSystem fileSystem; private static Map<String, Integer> map; private static FileSystem getFileSystem() throws URISyntaxException, IOException { if(fileSystem == null){ Configuration conf = new Configuration(); URI uri = new URI("hdfs://192.168.1.190:9000"); fileSystem = FileSystem.get(uri, conf); } return fileSystem; } public static int getMapSize(){ return getMap().size(); } public static Map<String, Integer> getMap(){ if(map == null){ map = new HashMap<String, Integer>(); FSDataInputStream in; BufferedReader reader = null; try{ fileSystem = getFileSystem(); in = fileSystem.open(new Path("hdfs://192.168.1.190:9000/aprProduce")); reader = new BufferedReader(new InputStreamReader(in)); String line = null; int i = 1; while((line = reader.readLine()) != null) { map.put(line, i++); } }catch(Exception e){ e.printStackTrace(); }finally{ try { if(reader != null) reader.close(); } catch (IOException e) { e.printStackTrace(); } } } return map; } public static void copyProduces(String inputPath, String outPutDir) throws Exception{ FileStatus[] listStatus = getFileSystem().listStatus(new Path(inputPath)); for (FileStatus fileStatus : listStatus) { String name = fileStatus.getPath().getName(); if(!fileStatus.isDir() && !StringUtils.equals(name, "_SUCCESS") && !StringUtils.startsWith(name, "part-r-")){ FSDataInputStream openStream = fileSystem.open(fileStatus.getPath()); IOUtils.copyBytes(openStream, fileSystem.create(new Path("/"+outPutDir+"/"+name.split("-")[0])), 1024, false); IOUtils.closeStream(openStream); } } } }
3.com.huawei.AprProduces
package com.huawei; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 分析文件,获得所有产品名 * args[0] 原始文件 * args[1] 输出文件:所有产品名 * */ public class AprProduces { public static void main(String[] args) throws Exception { Job job = new Job(new Configuration(), AprProduces.class.getSimpleName()); job.setJarByClass(AprProduces.class); job.setMapperClass(AprProducesMap.class); job.setReducerClass(AprProducesReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } } class AprProducesMap extends Mapper<LongWritable, Text, Text, NullWritable>{ Text k2 = new Text(); @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException { String line = value.toString(); String[] splited = line.split("\t"); k2.set(splited[1]);//四个文件的 文件名的下标不一样,需要修改 context.write(k2, NullWritable.get()); } } class AprProducesReducer extends Reducer<Text, Text, Text, NullWritable>{ @Override protected void reduce(Text k2, Iterable<Text> v2s, Reducer<Text, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException { context.write(k2, NullWritable.get()); } }
4.com.huawei.RenameApr
package com.huawei; public class RenameApr { public static void main(String[] args) throws Exception{ //文件重命名 HdfsUtils.copyProduces("/apr-output/", "aprProduce"); } }
相关推荐
2. **Reduce(归并)阶段**:这一阶段的任务是对Map阶段产生的键值对进行聚合处理,将相同键的值进行组合,并对这些值执行进一步的计算操作,最后生成最终结果。 #### 二、MapReduce的工作机制 1. **文件切片**:...
2. 数据切分:将大文件分割成多个键值对,键可能是视频ID或时间戳,值可能包含用户行为的具体信息。 3. 数据映射:对每个键值对执行自定义逻辑,例如提取关键词、计算用户活动等。 Reduce阶段则会聚合Map阶段产生的...
Map阶段负责切分输入数据并生成键值对,Reduce阶段则对相同键的键值对进行聚合。 ### 查看HDFS文件系统数据的三种方法 1. 使用Hadoop提供的命令行工具`hdfs dfs`,如`hdfs dfs -ls /`来查看根目录下的文件和目录。 ...
- **Reduce阶段**:Reduce任务接收到Shuffle阶段传递过来的键值对,并对这些键值对进行进一步处理。Reduce函数的作用是对每个键的所有值进行聚合操作,最终产生结果。例如,可以统计具有相同键的值的总数。 **2. ...
总的来说,Google MapReduce通过上述的优化手段,如分区函数保证数据的正确聚合,合并函数减少资源消耗,以及合理的输入文件切分策略,实现了高效、可扩展的大规模数据处理。这种编程模型已被广泛应用于各种场景,...
Map阶段负责对原始数据进行切分和处理,而Reduce阶段则将Map阶段的结果进行聚合,得出最终结果。 在Hadoop中,MapReduce与Hadoop分布式文件系统(HDFS)紧密结合,形成了一套高效的数据处理解决方案。HDFS为大数据...
### MapReduce技术详解 ...通过对输入数据进行映射和归约操作,MapReduce不仅能够有效地处理PB级别的数据,还提供了强大的容错能力和高度的可扩展性。随着大数据时代的到来,MapReduce的应用前景将更加广阔。
- Map函数对输入键值对进行处理,通常是对输入数据进行简单的转换操作。 - Map函数输出键值对,这些键值对会被按照键进行排序和分组。 3. **Shuffle阶段**: - 在Map任务完成后,其输出会根据键进行分区和排序,...
3. **数据分布**:数据被切分成块,分布在集群的不同节点上进行处理。 4. **负载均衡**:确保任务均匀分配到各个节点,避免单点过载。 5. **容错机制**:能够检测并自动恢复由于硬件故障导致的任务失败。 6. **代码...
2. InputFormat 模块负责做 Map 前的预处理,主要包括验证输入的格式是否符合 JobConfig 的输入定义、将 input 的文件切分为逻辑上的输入 InputSplit。 3. 将 RecordReader 处理后的结果作为 Map 的输入,然后 Map ...
3. Bzip2(BZip2Codec):提供最高压缩率,但压缩和解压速度较慢,支持数据切分,适用于对压缩率有高要求但对速度不敏感的场景。 4. LZO(LzopCodec):压缩速度较快,解压速度更快,但需要预先建立索引,并且不支持...
在大数据处理领域,Hadoop MapReduce是一种广泛应用的分布式计算框架,它使得在大规模数据集上进行并行计算成为可能。本篇文章将详细讲解如何利用Hadoop MapReduce实现TF-IDF(Term Frequency-Inverse Document ...
- **输入数据的切分**:MapReduce框架首先将输入数据分成若干个块,这些块可以分布在多台计算机上进行处理。 - **Map阶段**:每台计算机上的Map函数处理分配给它的数据块,并产生一系列中间键值对。 - **Shuffle阶段...
MapReduce的实践示例往往涉及到数据的分布式存储、任务的切分、并行处理以及最终的数据汇总。该实践涉及的主要知识点包括: 1. MapReduce的设计与工作原理:MapReduce的设计思想源自于函数式编程中的map和reduce...
WordCount是最经典的MapReduce应用案例之一,其目标是对大量文本文件中的单词进行计数。 1. **Map函数**:对于每一份文档,Map函数将文档中的每一个单词映射为键值对(单词,1),表示每一个单词出现一次。 2. **...
2. **数据切片**:数据文件会被切分成多个块,每个块被分配给一个MapTask进行处理。 3. **Map阶段**:MapTask对分配给它的数据块进行处理,产生一系列键值对输出。 4. **Reduce阶段**:ReduceTask接收来自所有Map...
在 Java 中,MapReduce 程序可以使用 Hadoop 提供的 API 进行开发,主要包括 InputFormat、OutputFormat、Mapper/Reducer 和 Writable 等。InputFormat 用于描述输入数据的格式,常用的为 TextInputFormat,提供数据...
- 在Reduce函数执行前,MapReduce框架会根据`IntPair`的排序规则对数据进行排序。 4. **排序和分组**: - 为了实现二次排序,需要通过JobConf对象设置排序和分组比较器。 - **设置排序比较器**:通过`job....
- **输入切分**:首先,Hadoop MapReduce 将输入数据集切分为若干个数据块,每个数据块由一个 map 任务处理。 - **Map 阶段**:每个 map 任务处理一个数据块,产生中间键值对。 - **Shuffle 排序**:中间键值对...