包含(移动多个节点;移动单个节点;删除多个节点;删除单个节点;新增节点),另附数据库表结构~有问题可以留言(www.webyang.net)。
一、db sql语句 //db used for php无限分类 create table tree( id int(10) not null primary key auto_increment, name varchar(255) not null, lft int(10) not null default 0, rgt int(10) not null default 0, status int(1) not null default 0, index lft (`lft`), index rgt (`rgt`), index status(`status`) )charset utf8; insert into tree value (null,'Food',1,18,0); insert into tree value (null,'Fruit',2,11,0); insert into tree value (null,'Red',3,6,0); insert into tree value (null,'Cherry',4,5,0); insert into tree value (null,'Yellow',7,10,0); insert into tree value (null,'Banana',8,9,0); insert into tree value (null,'Meat',12,17,0); insert into tree value (null,'Beef',13,14,0); insert into tree value (null,'Pork',15,16,0); 二、php文件 <?php error_reporting(0); /* 1 Food 18 +------------------------------+ 2 Fruit 11 12 Meat 17 +-------------+ +------------+ 3 Red 6 7 Yellow 10 13 Beef 14 15 Pork 16 4 Cherry 5 8 Banana 9 descendants = (right – left - 1) / 2 */ /** *用于移动一个节点(包括子节点) *@param array $pdata = array('id'=>主键,'root'=>名称) 二选一 父节点(为空时插入最大的父节点) *@param array $ndata = array('id'=>主键,'root'=>名称) 二选一 下一个兄弟节点(没有兄弟的时候就不用) *@param array $cdata = array('id'=>主键,'root'=>名称) 二选一 当前待移动的节点 */ function move_tree_all($pdata=array(),$ndata=array(),$cdata=array()) { $cid = $cdata['id'] ? intval($cdata['id']) : ''; $croot = $cdata['root']; if(!$cid && !$croot) return; //需自加判断 //1、cdata不能为顶级 //2、cdata不能比$pdata等级高 $adata = get_tree_all($cdata); //获取当前移动节点的所有节点 delete_tree_all($cdata,1); //逻辑删除当前移动节点的所有节点 foreach($adata as $k => $val) { if($k != 0) { $pdata = array('root'=>$val['parent']); insert_tree($pdata,'',$val['name'],1); } else { //first insert_tree($pdata,$ndata,$val['name'],1); } } } /** *用于移动一个节点(不包括子节点) *@param array $pdata = array('id'=>主键,'root'=>名称) 二选一 父节点(为空时插入最大的父节点) *@param array $ndata = array('id'=>主键,'root'=>名称) 二选一 下一个兄弟节点(没有兄弟的时候就不用) *@param array $cdata = array('id'=>主键,'root'=>名称) 二选一 当前待移动的节点 */ function move_tree_item($pdata=array(),$ndata=array(),$cdata=array()) { $cid = $cdata['id'] ? intval($cdata['id']) : ''; $croot = $cdata['root']; if(!$cid && !$croot) return; //需自加判断 //1、cdata不能为顶级 if(!$croot) { $sql = "SELECT name from tree where id = $cid"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); $croot = $row['name']; unset($sql); } delete_tree_item($cdata,1); insert_tree($pdata,$ndata,$croot,1); } /** *用于插入一个节点 *@param array $pdata = array('id'=>主键,'root'=>名称) 二选一 父节点(为空时插入最大的父节点) *@param array $ndata = array('id'=>主键,'root'=>名称) 二选一 下一个兄弟节点(没有兄弟的时候就不用) *@param string $name string 新插入的名称 *@param int $update 默认为空,为1时更新插入 */ function insert_tree($pdata=array(),$ndata=array(),$name,$update='') { if(!$name) return; $pid = $pdata['id'] ? intval($pdata['id']) : ''; $proot = $pdata['root']; $nid = $ndata['id'] ? intval($ndata['id']) : ''; $nroot = $ndata['root']; //有父无兄(最小的子节点,父节点的最后一个儿子) if(($pid || $proot) && !($nid || $nroot)) { $sql = $pid ? "SELECT lft, rgt FROM tree WHERE id = '{$pid}';" : "SELECT lft, rgt FROM tree WHERE name = '{$proot}';"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); unset($sql); //新节点 $lft = $row['rgt']; $rgt = $lft+1; if(!$update) { $sql = "insert into tree values (null,'{$name}',$lft,$rgt,0);"; $sql1 = "update tree set rgt = rgt+2 where rgt >= {$row['rgt']}"; $sql2 = "update tree set lft = lft+2 where lft >= {$row['rgt']}"; } else { $sql = "update tree set lft=$lft,rgt=$rgt,status=0 where name ='{$name}';"; $sql1 = "update tree set rgt = rgt+2 where status =0 and rgt >= {$row['rgt']}"; $sql2 = "update tree set lft = lft+2 where status =0 and lft >= {$row['rgt']}"; } mysql_query($sql1); mysql_query($sql2); mysql_query($sql); //last add new data } //有父有兄 if(($pid || $proot) && ($nid || $nroot)) { $sql = $nid ? "SELECT lft, rgt FROM tree WHERE id = '{$nid}';" : "SELECT lft, rgt FROM tree WHERE name = '{$nroot}';"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); unset($sql); //新节点 $lft = $row['lft']; $rgt = $lft+1; if(!$update) { $sql = "insert into tree values (null,'{$name}',$lft,$rgt,0);"; $sql1 = "update tree set rgt = rgt+2 where rgt >= {$row['lft']};"; $sql2 = "update tree set lft = lft+2 where lft >= {$row['lft']};"; } else { $sql = "update tree set lft=$lft,rgt=$rgt,status=0 where name ='{$name}';"; $sql1 = "update tree set rgt = rgt+2 where status = 0 and rgt >= {$row['lft']};"; $sql2 = "update tree set lft = lft+2 where status = 0 and lft >= {$row['lft']};"; } mysql_query($sql1); mysql_query($sql2); mysql_query($sql); //last add new data } //无父无兄(大佬) if(!($pid || $proot) && !($nid || $nroot)) { $sql = "SELECT max(`rgt`) as rgt FROM tree;"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); unset($sql); //新节点 $lft = 1; $rgt = $row['rgt']+2; if(!$update) { $sql = "insert into tree values (null,'{$name}',$lft,$rgt,0);"; $sql1 = "update tree set rgt = rgt+1"; $sql2 = "update tree set lft = lft+1"; } else { $sql = "update tree set lft=$lft,rgt=$rgt,status=0 where name ='{$name}';"; $sql1 = "update tree set rgt = rgt+1 where status = 0"; $sql2 = "update tree set lft = lft+1 where status = 0"; } mysql_query($sql1); mysql_query($sql2); mysql_query($sql); //last add new data } } /** *用于删除一个节点(包括子节点) *@param array $data = array('id'=>主键,'root'=>名称) 二选一 *@param int $update 默认为空,为1时逻辑删除 */ function delete_tree_all($data,$update='') { $id = $data['id'] ? intval($data['id']) : ''; $root = $data['root']; if(!$id && !$root) return; $sql = $id ? "SELECT lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT lft, rgt FROM tree WHERE name = '{$root}';"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); unset($sql); $middle = $row['rgt']-$row['lft']+1; if(!$update) { $sql = "delete from tree where lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."'"; $sql1 = "update tree set rgt = rgt-{$middle} where rgt > {$row['rgt']}"; $sql2 = "update tree set lft = lft-{$middle} where lft > {$row['rgt']}"; } else { $sql = "update tree set status = 1 where lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."'"; $sql1 = "update tree set rgt = rgt-{$middle} where status=0 and rgt > {$row['rgt']}"; $sql2 = "update tree set lft = lft-{$middle} where status=0 and lft > {$row['rgt']}"; } mysql_query($sql); mysql_query($sql1); mysql_query($sql2); } /** *用于删除一个节点(不包括子节点) *@param array $data = array('id'=>主键,'root'=>名称) 二选一 *@param int $update 默认为空,为1时逻辑删除 */ function delete_tree_item($data,$update='') { $id = $data['id'] ? intval($data['id']) : ''; $root = $data['root']; if(!$id && !$root) return; $sql = $id ? "SELECT id,lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT id,lft, rgt FROM tree WHERE name = '{$root}';"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); unset($sql); if(!$update) { $sql = "delete from tree where id = {$row['id']};"; $sql1 = "update tree set rgt = rgt-1,lft = lft -1 where lft > {$row['lft']} and rgt < {$row['rgt']}"; $sql2 = "update tree set lft = lft-2 where lft > {$row['rgt']}"; $sql3 = "update tree set rgt = rgt-2 where rgt > {$row['rgt']}"; } else { $sql = "update tree set status = 1 where id = {$row['id']};"; $sql1 = "update tree set rgt = rgt-1,lft = lft -1 where status = 0 and lft > {$row['lft']} and rgt < {$row['rgt']}"; $sql2 = "update tree set lft = lft-2 where status = 0 and lft > {$row['rgt']}"; $sql3 = "update tree set rgt = rgt-2 where status = 0 and rgt > {$row['rgt']}"; } mysql_query($sql); mysql_query($sql1); //can do or not do just right,but not do load empty 2 number in middle mysql_query($sql2); mysql_query($sql3); } /** *用于获取所有的节点 *@param array $data = array('id'=>主键,'root'=>名称) 二选一 */ function get_tree_all($data) { $id = $data['id'] ? intval($data['id']) : ''; $root = $data['root']; if(!$id && !$root) return; $sql = $id ? "SELECT lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT lft, rgt FROM tree WHERE name = '{$root}';"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); $adata = array(); //所有数据 $right = array(); //计数 $prev = array(); $result = mysql_query("SELECT id,name, lft, rgt FROM tree WHERE lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."' ORDER BY lft ASC ;"); while ($row = mysql_fetch_assoc($result)) { if (count($right) > 0) { while ($right[count($right) - 1] < $row['rgt']) { // 检查我们是否应该将节点移出堆栈 array_pop($right); array_pop($prev); } } $parent = $prev ? end($prev) : ''; $adata[] = array('id'=>$row['id'],'name'=>$row['name'],'level'=>count($right),'parent'=>$parent); $right[] = $row['rgt']; $prev[] = $row['name']; } return $adata; } /** *用于展示分类 *@param array $data = array('id'=>主键,'root'=>名称) 二选一 */ function display_tree($data) { $id = $data['id'] ? intval($data['id']) : ''; $root = $data['root']; if(!$id && !$root) return; $sql = $id ? "SELECT lft, rgt FROM tree WHERE id = '{$id}';" : "SELECT lft, rgt FROM tree WHERE name = '{$root}';"; $result = mysql_query($sql); $row = mysql_fetch_assoc($result); $right = array(); $result = mysql_query("SELECT name, lft, rgt FROM tree WHERE lft BETWEEN '" . $row['lft'] . "' AND '" . $row['rgt'] ."' ORDER BY lft ASC ;"); while ($row = mysql_fetch_assoc($result)) { if (count($right) > 0) { // 检查我们是否应该将节点移出堆栈 while ($right[count($right) - 1] < $row['rgt']) { array_pop($right); } } echo str_repeat(' ',count($right)) . $row['name'] . "\n"; $right[] = $row['rgt']; } } mysql_connect('localhost','root','') or die('connect error'); mysql_select_db('test') or die('database error'); mysql_query('set names utf8'); display_tree(array('root'=>'Food')); //display_tree(array('root'=>'bigboss')); //move_tree_all($pdata=array('root'=>'Fruit'),$ndata=array('root'=>'Red'),$cdata=array('root'=>'Meat')); //move_tree_all('','',$cdata=array('root'=>'Meat')); //move_tree_item('','',array('root'=>'Red')); //move_tree_item(array('root'=>'Red'),array('root'=>'Cherry'),array('root'=>'Fruit')); //delete_tree_all(array('root'=>'Yellow')); //delete_tree_all(array('root'=>'Meat')); //delete_tree_item(array('root'=>'Meat')); //insert_tree('','','bigboss'); //insert_tree(array('root'=>'Red'),'','dalao'); //insert_tree(array('root'=>'Red'),array('root'=>'Cherry'),'baddalao'); //insert_tree(array('root'=>'Fruit'),array('root'=>'Red'),'Redbother'); display_tree(array('root'=>'Food'));
相关推荐
左右值法(Left-Right Value)是实现无限级分类的一种高效策略,它通过为每个节点分配两个数值(左值和右值)来表示节点在整个树中的位置。 首先,我们需要理解基本概念。在左右值法中,每个分类都有一个左值和一个...
在实现一个PHP项目时,如果需要使用分类功能,并且分类的层级不确定,可以考虑使用无限级分类的方法。这种方法允许系统自适应不同层级的分类需求,方便对数据进行组织和管理。本文将详细介绍如何使用PHP结合MySQL...
综上所述,ThinkPHP 的左右值无限分类提供了一种高效、灵活的方式来管理大量的分类数据,其核心在于通过 `lft` 和 `rgt` 字段实现对树结构的快速查询和操作。了解并熟练掌握这种分类方法,对于优化网站的性能和用户...
在介绍PHP实现左右值无限分类算法之前,我们需要了解为什么需要这样的算法。在很多Web应用中,比如产品分类、论坛、邮件列表等,我们经常会遇到需要存储和展示树状结构数据的场景。关系型数据库如MySQL是PHP后端开发...
PHP无限分类[左右值]算法 PHP显示日期、周几、农历初几、什么节日函数 PHP格式化数据,防止注入函数 PHP模拟登陆 PHP生成唯一标识符函数 PHP生成曲线图函数 PHP生成条形码 PHP统计字符串里单词出现次数 PHP...
这里的`lft`和`rgt`字段是用于存储树结构的左右值,它们是实现无限级分类的关键。左右值法(也称为Materialized Path)是一种有效的方法,可以快速地进行分类操作,比如查找子节点或同级节点。 在前序遍历中,我们...
"基于layui实现树形穿梭框"是layui框架中的一个组件,用于构建交互式的树状结构选择器,常用于权限管理、数据分类选择等场景。下面将详细介绍这个知识点。 1. layui框架基础: layui是一个轻量级的前端框架,包含...
文字从左边移动到右边,JS循环控制 JavaScript使用indexOf搜索字符串并返回位置 Javascript文字左右反弹的效果代码 CSS最简单的阴影文字特效 JavaScript隐藏显示文字 JavaScript控制字符大小写转换 JS逐字变化文字...