`
yangzb
  • 浏览: 3514818 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

JMS request/reply from an EJB

    博客分类:
  • Java
阅读更多

Sometimes something that appears trivial turns out to be a lot more involved. Doing JMS request/reply from an EJB is such a case. Let's take a look...

Request/reply

JMS can be used as a form of inter process communication. JMS is meant for asynchronous calls, but it can also used for synchronous calls. In that case, the first process sends a message to a queue or topic, and waits until another process has replied to the message. The reply is sent to a different queue or topic. Advantages of using JMS for interprocess communication is that the two processes are completely decoupled. The two processes only need to agree on what is in the message.

Synchronous communication in JMS is also called request/reply.

The JMS api provides two helper classes to make request/reply easier. They are the QueueRequestor and TopicRequestor classes. Here is an example of how they can be used:

QueueConnection c = (QueueConnectionFactory) (new
InitialContext().lookup("qcf"));
QueueSession s = c.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue q = (Queue) (new InitialContext().lookup("requestqueue"));
QueueRequestor r = new QueueRequestor(s, q);
Message reply = r.request(s.createTextMessage("1233442342"));
c.close();

Looks simple, right? However, when this code is used in a typical EJB, it will likely not work. Why not? Is there something wrong with the QueeuRequestor ? Well, yes, yet that is not the problem. Let's look at the implementation of the QueueRequestor :

public class QueueRequestor {
 QueueSession session; 
 Queue queue; 
 TemporaryQueue tempQueue;
 QueueSender sender;
 QueueReceiver receiver;

public QueueRequestor(QueueSession session, Queue queue) throws JMSException {
  this.session = session;
  this.queue = queue;
  tempQueue = session.createTemporaryQueue();
  sender = session.createSender(queue);
  receiver = session.createReceiver(tempQueue);
}

public Message request(Message message) throws JMSException {
  message.setJMSReplyTo(tempQueue);
  sender.send(message);
  return receiver.receive();
}

public void close() throws JMSException {
  session.close();
  tempQueue.delete();
}
}

So we can rewrite the above code sample as follows:

QueueConnection c = (QueueConnectionFactory) (new InitialContext().lookup("qcf"));
QueueSession s = c.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
Queue q = (Queue) (new
InitialContext().lookup("requestqueue"));
Message request = s.createTextMessage("1233442342");
request.setJMSReplyTo(s.createTemporaryQueue();
s.createSender(q).send(m);
Message reply = s.createReceiver(q).receive();
c.close();

There's nothing obviously wrong with that, so why does this typically not work when this code is in an EJB?

Transactions

Before we look at the explanation of why the above code doesn't work in an EJB, let's review some basics about application servers and JMS servers. A JMS server is typically a stand alone process. Applications can communicate with this server using a client runtime. The client runtime implements the JMS API as defined in the JMS specification. If you're building a stand-alone application, you use the client runtime directly. Example, when you're using the JMS server shipped with Java CAPS you would be using com.stc.stcjms.jar to talk to the server process (stcms.exe ). The client runtime implemented in com.stc.jms.stcjms.jar implements the JMS api and communicates with the server (stcms.exe ) over tcp/ip sockets.

However, when your code lives in an EJB, you're not using the JMS client runtime directly. For example, when you obtain a connection factory from JNDI in an EJB, you will not get the connection factory object that belongs to the JMS provider itself, but you get a factory that is implemented by a resource adapter. As of J2EE 1.4, the interfacing between the application server and JMS is done through a Resource Adapter. In the example for Java CAPS, you would obtain a connection factory implemented by the JMSJCA resource adapter instead of the com.stc.jms.client.STCQueueConnectionFactory that belongs to the STCMS client runtime.

The Resource Adapter acts like a wrapper around the objects that are implemented in the JMS client runtime. One of the responsibilities of the Resource Adapter is to make sure that JMS acts like a transactional resource. This means that JMS connection (technically, the JMS session) is enlisted with the transaction manager of the applicaiton server. In fact, under the covers the Resource Adapter really uses an XASession rather than an AUTO_ACKNOWLEDGE session. What effect did it have to specify the arguments to

c.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

In fact, these arguments are ignored, so they have no effect whatsoever.

Use of JMS in a transaction

Let's say that we have a bean managed EJB (BMT) with the following code:

EJBContext ctx = ...;
ctx.getUserTransaction().begin();

QueueConnection c = (QueueConnectionFactory) (new InitialContext().lookup("qcf")); QueueSession s = c.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); Queue q = (Queue) (new InitialContext().lookup("requestqueue")); Message request = s.createTextMessage("1233442342"); request.setJMSReplyTo(s.createTemporaryQueue(); s.createSender(q).send(m); Message reply = s.createReceiver(q).receive(); c.close(); ctx.getUserTransaction().commit();

The message will be sent to the queue only when the statement getUserTransaction().commit() is executed. Before this statement, the message will not be visible anywhere.  So when the receive() method is executed, the message was really not sent to the queue. The other process never gets the request, and hence, a reply will never be received. Since no timeout is specified, the application simply hangs.

Now that we know that, the solution is pretty simple: just commit the transaction before receiving the reply.

ctx.getUserTransaction().begin();

QueueConnection c = (QueueConnectionFactory) (new InitialContext().lookup("qcf")); QueueSession s = c.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); Queue q = (Queue) (new InitialContext().lookup("requestqueue")); Message request = s.createTextMessage("1233442342"); request.setJMSReplyTo(s.createTemporaryQueue(); s.createSender(q).send(m); ctx.getUserTransaction().commit();
ctx.getUserTransaction().begin(); Message reply = s.createReceiver(q).receive(); c.close(); ctx.getUserTransaction().commit();

It depends on the business logic if you can simply split up the transaction in two. Perhaps something else happens in the transaction, for example you could update a database in the same transaction. In that case, you may not want to commit the transaction yet! How can we deal with that situation?

The solution would be to suspend the transaction, create a new transaction, send the request, commit the new transaction, unsuspend the first transaction, and continue. Sounds complicated? It is, but it can be simplified using an EJB: simply add a new business method to the EJB, make sure that the method's trans-attribute is set to NotSupported .
Next, instantiate a new EJB and call that method. By calling that method, the transaction will automatically be suspended.

Note that it is crucial to instantiate a new EJB: if you just call the new business method from the same EJB instance, the application server will not intercept the method and will not suspend the transaction.

When the EJB is CMT

Pretty much the same goes if the EJB is not BMT but CMT. If a transaction was started, the same deadlock occurs: the send() is never committed until the transaction is committed, so the receive() method will never receive a reply. In that case, add a new business method and make sure that the trans-attribute is set to RequiresNew . The application server will then suspend the main transaction and start a new transaction automatically. As with BMT, make sure that you call the new business method on a new instance of the EJB rather than on the same instance.

When there is no transaction

What happens if there is no transaction when you call send() ? Well, that depends on the implementation. The specification is not clear on what should happen when an XA resource is used outside of a transaction. The JMS CTS implies that the behavior should be that of auto-commit (or AUTO_ACKNOWLEDGE in JMS parlance). CTS stands for Compliance Test Suite. The CTS for JMS consists of a few thousand tests. Every implementation that claims that  be compliant with the JMS spec must pass these tests. Hence, most implementations, including the one that ships with Java CAPS will exhibit AUTO_ACKNOWLEDGE behavior. In that case, the above code will work and the QueueRequestor can be used.

What about the QueueRequestor?

Can't we use the QueueRequestor with transactions? The simple answer is no. Why did the Resource Adapter not take care of this? The problem is that the QueueRequestor is implemented by the JMS api, and not by the JMS provider or Resource Adapter. Perhaps this is another example why it is generally a bad idea to provide implementation classes in API-s?

There's another problem with the QueueRequestor class: there is no way to specify a timeout value. You would probably prefer a timeout exception rather than having a hanging application.

Conclusion

Knowing what happens under the covers explains why request/reply cannot work in a single transaction. Simply post the request in a separate transaction.

分享到:
评论

相关推荐

    JMS规范PDF

    - **交互模式:** 描述了JMS支持的请求/回复(Request/Reply)消息交互模式,这是一种常见的通信模式,允许客户端发送请求并等待响应。 综上所述,JMS规范1.1(中文版)详细阐述了Java消息服务的核心概念、架构设计...

    h_JAVA 2应用编程150例.rar

    实例119 Request-Reply模式的JMS应用 421 实例120 使用Java IDL 426 实例121 EJB与CORBA的交互 430 实例122 基于EJB的真实世界模型 433 实例123 EJB的商业应用——定购单 447 第11章 Java 2 Platform Micro Edition...

    java应用软件程序设计

    Reply模式的JMS应用 421 实例120 使用Java IDL 426 实例121 EJB与CORBA的交互 430 实例122 基于EJB的真实世界模型 433 实例123 EJB的商业应用——定购单 447 第11章 Java 2 Platform Micro Edition...

    MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。

    palkert_3ck_01_0918.pdf

    palkert_3ck_01_0918

    pepeljugoski_01_1106.pdf

    pepeljugoski_01_1106

    tatah_01_1107.pdf

    tatah_01_1107

    [AB PLC例程源码][MMS_046393]Motor Speed Reference.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    基于51的步进电机控制系统20250302

    题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)

    [AB PLC例程源码][MMS_041234]Logix Fault Handler.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_042348]Using an Ultra3000 as an Indexer on DeviceNet with a CompactLogix.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    智慧校园平台建设全流程详解:从需求到持续优化

    内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。

    AI淘金实战手册:100+高收益变现案例解析

    该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。

    palkert_3ck_02_0719.pdf

    palkert_3ck_02_0719

    2006-2023年 地级市-克鲁格曼专业化指数.zip

    克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。

    [AB PLC例程源码][MMS_046305]R2FX.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    精品推荐-通信技术LTE干货资料合集(19份).zip

    精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx

    matlab程序代码项目案例:matlab程序代码项目案例matlab中Toolbox中带有的模型预测工具箱.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    pepeljugoski_01_0508.pdf

    pepeljugoski_01_0508

Global site tag (gtag.js) - Google Analytics