------------------------------------------------------------------------------------------------------------------------------------ /* 分析函数的作用总结 1.可以减少表或索引的访问次数。 2.实现复杂的行间计算,聚合等,使sql的结构清晰。 3.缺点是很多分析函数要求排序,需要对排序的字段建立索引以达到优化的效果。 章节如下 1.分析函数简单示例 2.排序分析函数(RANK,DENSE_RANK,ROW_NUMBER) 3.分析函数(Top/Bottom N,First/Last,NTILE) 4.分析函数之窗口函数 5.分析函数之报表函数 */ --------------------------------------------------------------------------------------------------------------------------------------- --1.分析函数简单示例 --生成测试数据 DROP TABLE ORDERS_TMP; CREATE TABLE ORDERS_TMP ( CUST_NBR NUMBER(5) NOT NULL, REGION_ID NUMBER(5) NOT NULL, SALESPERSON_ID NUMBER(5) NOT NULL, YEAR NUMBER(4) NOT NULL, MONTH NUMBER(2) NOT NULL, TOT_ORDERS NUMBER(7) NOT NULL, TOT_SALES NUMBER(11,2) NOT NULL ); INSERT INTO ORDERS_TMP VALUES(11,7,11,2001,7,2,12204); INSERT INTO ORDERS_TMP VALUES(4,5,4,2001,10,2,37802); INSERT INTO ORDERS_TMP VALUES(7,6,7,2001,2,3,3705); INSERT INTO ORDERS_TMP VALUES(10,6,8,2001,1,2,21691); INSERT INTO ORDERS_TMP VALUES(10,6,7,2001,2,3,42624); COMMIT; SELECT * FROM ORDERS_TMP A; CUST_NBR REGION_ID SALESPERSON_ID YEAR MONTH TOT_ORDERS TOT_SALES --------- ---------- -------------- ---------- ---------- ---------- ---------- 11 7 11 2001 7 2 12204 4 5 4 2001 10 2 37802 7 6 7 2001 2 3 3705 10 6 8 2001 1 2 21691 10 6 7 2001 2 3 42624 --统计销售额大于%20以及所在区域的销售额,及各个客户销售比例 SELECT ALL_SALES.*, 100*ROUND(CUST_SALES/REGION_SALES,2)||'%' PERCENT FROM (SELECT A.CUST_NBR CUSTOMER, A.REGION_ID REGION, SUM(A.TOT_SALES) CUST_SALES, SUM(SUM(A.TOT_SALES)) OVER(PARTITION BY A.REGION_ID) REGION_SALES, SUM(SUM(A.TOT_SALES)) OVER() TOTAL_SALES FROM ORDERS_TMP A GROUP BY A.REGION_ID, A.CUST_NBR) ALL_SALES WHERE ALL_SALES.CUST_SALES > ALL_SALES.REGION_SALES * 0.2; CUSTOMER REGION CUST_SALES REGION_SALES TOTAL_SALES PERCENT ---------- ---------- ---------- ------------ ----------- -------- 4 5 37802 37802 118026 100% 10 6 64315 68020 118026 95% 11 7 12204 12204 118026 100% --Over函数的作用是告诉SQL引擎:按照区域对数据进行分组,然后累积每个区域下所有客户的订单总额 --PARTITION 子句,将相同的行聚合在一起,若没有partition子句,标示统计所有的行 ---------------------------------------------------------------------------------------------------------------------------------------- --二.分析函数(RANK,DENSE_RANK,ROW_NUMBER) --生成测试数据 CREATE TABLE USER_ORDER ( REGION_ID NUMBER(2), CUSTOMER_ID NUMBER(2), CUSTOMER_SALES NUMBER ); INSERT INTO USER_ORDER VALUES(7,11,1590421); INSERT INTO USER_ORDER VALUES(6,10,1696748); INSERT INTO USER_ORDER VALUES(6,9,1108959); INSERT INTO USER_ORDER VALUES(5,2,1224992); INSERT INTO USER_ORDER VALUES(9,24,1224992); INSERT INTO USER_ORDER VALUES(9,23,1224992); COMMIT; SELECT * FROM USER_ORDER; REGION_ID CUSTOMER_ID CUSTOMER_SALES ---------- ----------- -------------- 7 11 1590421 6 10 1696748 6 9 1108959 5 2 1224992 9 24 1224992 9 23 1224992 --不使用分析函数,查找出订单总额前三名的客户,请注意有金额相同的记录 SELECT ROWNUM, T.* FROM (SELECT * FROM USER_ORDER ORDER BY CUSTOMER_SALES DESC) T WHERE ROWNUM <= 3 ORDER BY CUSTOMER_SALES DESC; ROWNUM REGION_ID CUSTOMER_ID CUSTOMER_SALES ---------- ---------- ----------- -------------- 1 6 10 1696748 2 7 11 1590421 3 5 2 1224992 --很明显,若是简单的按照rownum排序的话,我们漏掉了两条 --采用分析函数 SELECT REGION_ID, CUSTOMER_ID, SUM(CUSTOMER_SALES) TOTAL, RANK() OVER(ORDER BY SUM(CUSTOMER_SALES) DESC) RANK, DENSE_RANK() OVER(ORDER BY SUM(CUSTOMER_SALES) DESC) DENSE_RANK, ROW_NUMBER() OVER(ORDER BY SUM(CUSTOMER_SALES) DESC) ROWNUMBER FROM USER_ORDER GROUP BY REGION_ID, CUSTOMER_ID REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROWNUMBER ---------- ----------- ---------- ---------- ---------- ---------- 6 10 1696748 1 1 1 7 11 1590421 2 2 2 9 23 1224992 3 3 3 5 2 1224992 3 3 4 9 24 1224992 3 3 5 6 9 1108959 6 4 6 --从上面的结果可以看出三种排序策略的不同 --1.RANK 函数对于相同的结果,排名是一样的,但会在最后一条相同的记录和下一条记录之间空出排名 --2.DENSE_RANK策略与RANK差不多,但不会空出排名,排名是连续的。 --3.ROW_NUMBER返回一个唯一值,若遇到相同的数据,排名依次递增 --使用分析函数对各个地区内的订单总额排序 SELECT REGION_ID, CUSTOMER_ID, SUM(CUSTOMER_SALES) TOTAL, RANK() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC) RANK, DENSE_RANK() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC) DENSE_RANK, ROW_NUMBER() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC) ROW_NUMBER FROM USER_ORDER GROUP BY REGION_ID, CUSTOMER_ID; REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER --------- ----------- ---------- ---------- ---------- ---------- 5 2 1224992 1 1 1 6 10 1696748 1 1 1 6 9 1108959 2 2 2 7 11 1590421 1 1 1 9 23 1224992 1 1 1 9 24 1224992 1 1 2 --Partition by 子句在排列函数中的作用是将一个结果集划分成几个部分,这样排列函数就能够应用于这各个子集。 UPDATE USER_ORDER SET CUSTOMER_SALES = NULL WHERE CUSTOMER_ID = 23; COMMIT; --修改用户订单表其中一条为空值,然后再来看排序结果 SELECT REGION_ID, CUSTOMER_ID, SUM(CUSTOMER_SALES) TOTAL, RANK() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC) RANK, DENSE_RANK() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC) DENSE_RANK, ROW_NUMBER() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC) ROW_NUMBER FROM USER_ORDER GROUP BY REGION_ID, CUSTOMER_ID; REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER --------- ----------- ---------- ---------- ---------- ---------- 5 2 1224992 1 1 1 6 10 1696748 1 1 1 6 9 1108959 2 2 2 7 11 1590421 1 1 1 9 23 1 1 1 9 24 1224992 2 2 2 --我们会发现空值会排第一位,需要调整下,在分析函数的结尾加上NULLS LAST(NULLS LAST/FIRST告诉Oracle空值排名) SELECT REGION_ID, CUSTOMER_ID, SUM(CUSTOMER_SALES) TOTAL, RANK() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC NULLS LAST) RANK, DENSE_RANK() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC NULLS LAST) DENSE_RANK, ROW_NUMBER() OVER(PARTITION BY REGION_ID ORDER BY SUM(CUSTOMER_SALES) DESC NULLS LAST) ROW_NUMBER FROM USER_ORDER GROUP BY REGION_ID, CUSTOMER_ID; REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER ---------- ----------- ---------- ---------- ---------- ---------- 5 2 1224992 1 1 1 6 10 1696748 1 1 1 6 9 1108959 2 2 2 7 11 1590421 1 1 1 9 24 1224992 1 1 1 9 23 2 2 2 ------------------------------------------------------------------------------------------------------------------------------------- --三 分析函数(Top/Bottom N,First/Last,NTILE) --删除掉空值及重复值 DELETE USER_ORDER WHERE CUSTOMER_ID IN (23,24); COMMIT; --查找出订单总额最多和最少的用户,若按照签名的排名分析函数,至少需要两个查询,下面使用First/last来解决这个问题 admin@ORCL> SELECT * FROM USER_ORDER; REGION_ID CUSTOMER_ID CUSTOMER_SALES ---------- ----------- -------------- 7 11 1590421 6 10 1696748 6 9 1108959 5 2 1224992 SELECT MIN(CUSTOMER_ID) KEEP(DENSE_RANK FIRST ORDER BY SUM(CUSTOMER_SALES) DESC) FIRST, MIN(CUSTOMER_ID) KEEP(DENSE_RANK LAST ORDER BY SUM(CUSTOMER_SALES) DESC) LAST FROM USER_ORDER GROUP BY CUSTOMER_ID; FIRST LAST --------- ---------- 10 9 --MIN中的函数用于保证当存在多个Frist或Last的情况,返回唯一条记录(注意) --DENSE_RANK是必须的,RANK与ROW_NUMBER无法代替 --利用分析函数找出排名1/2的客户 SELECT REGION_ID, CUSTOMER_ID, SUM(CUSTOMER_SALES) AS CUSTOMER_SALES, NTILE(2) OVER(ORDER BY SUM(CUSTOMER_SALES) DESC) TIL FROM USER_ORDER GROUP BY REGION_ID, CUSTOMER_ID; --NTIL为各个记录在记录集中的排名计算比例,我们看到所有的记录被分为2个等级,那么我们只要取tile=1的记录值即可。 ------------------------------------------------------------------------------------------------------------------------------------ --四 分析函数之窗口函数 CREATE TABLE ORDERS( MONTH NUMBER(2), TOT_SALES NUMBER ); INSERT INTO ORDERS VALUES(1,610697); INSERT INTO ORDERS VALUES(2,428676); INSERT INTO ORDERS VALUES(3,637031); INSERT INTO ORDERS VALUES(4,541146); INSERT INTO ORDERS VALUES(5,592935); INSERT INTO ORDERS VALUES(6,501485); INSERT INTO ORDERS VALUES(7,606914); INSERT INTO ORDERS VALUES(8,460520); INSERT INTO ORDERS VALUES(9,392898); INSERT INTO ORDERS VALUES(10,510117); INSERT INTO ORDERS VALUES(11,532889); INSERT INTO ORDERS VALUES(12,492458); COMMIT; SELECT * FROM ORDERS; MONTH TOT_SALES ---------- ---------- 1 610697 2 428676 3 637031 4 541146 5 592935 6 501485 7 606914 8 460520 9 392898 10 510117 11 532889 12 492458 --ROWS BETWEEN ..PRECEDING AND ...FOLLOWING 意思是:在xxx之前和xxx之后 SELECT MONTH, SUM(TOT_SALES) MONTH_SALES, SUM(SUM(TOT_SALES)) OVER (ORDER BY MONTH ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING)TOTAL_SALES1, SUM(SUM(TOT_SALES)) OVER (ORDER BY MONTH ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) TOTAL_SALES2, SUM(SUM(TOT_SALES)) OVER (ORDER BY MONTH ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)TOTAL_SALES3 FROM ORDERS GROUP BY MONTH; MONTH MONTH_SALES TOTAL_SALES1 TOTAL_SALES2 TOTAL_SALES3 ---------- ----------- ------------ ------------ ------------ 1 610697 6307766 1039373 6307766 2 428676 6307766 1676404 6307766 3 637031 5697069 1606853 6307766 4 541146 5268393 1771112 6307766 5 592935 4631362 1635566 6307766 6 501485 4090216 1701334 6307766 7 606914 3497281 1568919 6307766 8 460520 2995796 1460332 6307766 9 392898 2388882 1363535 6307766 10 510117 1928362 1435904 6307766 11 532889 1535464 1535464 6307766 12 492458 1025347 1025347 6307766 --从结果中可以看出。 --TOTAL_SALES1逻辑是统计当前行+前一条+随后的所有记录。 --TOTAL_SALES2逻辑是统计当前行+当前行的前一条+当前行的后一条。 --TOTAL_SALES3逻辑是统计所有行 --统计每月订单总额及截止到当前月的订单总额 SELECT MONTH, SUM(TOT_SALES) MONTH_SALES, SUM(SUM(TOT_SALES)) OVER(ORDER BY MONTH ASC ROWS BETWEEN UNBOUNDED PRECEDING AND 0 FOLLOWING) TOTAL_SALES1, SUM(SUM(TOT_SALES)) OVER(ORDER BY MONTH ASC ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) TOTAL_SALE2, SUM(SUM(TOT_SALES)) OVER(ORDER BY MONTH) TOTAL_SALES3, ROUND(AVG(SUM(TOT_SALES)) OVER(ORDER BY MONTH),2) AVG_SALES FROM ORDERS GROUP BY MONTH; MONTH MONTH_SALES TOTAL_SALES1 TOTAL_SALE2 TOTAL_SALES3 AVG_SALES ---------- ----------- ------------ ----------- ------------ ---------- 1 610697 610697 610697 610697 610697 2 428676 1039373 1039373 1039373 519686.5 3 637031 1676404 1676404 1676404 558801.33 4 541146 2217550 2217550 2217550 554387.5 5 592935 2810485 2810485 2810485 562097 6 501485 3311970 3311970 3311970 551995 7 606914 3918884 3918884 3918884 559840.57 8 460520 4379404 4379404 4379404 547425.5 9 392898 4772302 4772302 4772302 530255.78 10 510117 5282419 5282419 5282419 528241.9 11 532889 5815308 5815308 5815308 528664.36 12 492458 6307766 6307766 6307766 525647.17 --从结果来看,前三条分析函数语句结果是相同的。 --order by 默认数据范围是当前所需的partition的第一行到当前行 --AVG_SALES用于统计滚动的月平均销量 --我们还可以用First_value和Last_value用于在窗口记录集中查找第一条和最后一条记录 SELECT MONTH, SUM(TOT_SALES) MONTH_SALES, FIRST_VALUE(SUM(TOT_SALES)) OVER(ORDER BY MONTH ASC ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) PRE_VALUE, LAST_VALUE(SUM(TOT_SALES)) OVER(ORDER BY MONTH ASC ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) NEXT_VALUE FROM ORDERS GROUP BY MONTH; MONTH MONTH_SALES PRE_VALUE NEXT_VALUE ---------- ----------- ---------- ---------- 1 610697 610697 428676 2 428676 610697 637031 3 637031 428676 541146 4 541146 637031 592935 5 592935 541146 501485 6 501485 592935 606914 7 606914 501485 460520 8 460520 606914 392898 9 392898 460520 510117 10 510117 392898 532889 11 532889 510117 492458 12 492458 532889 492458 --生成测试数据,测试窗口函数中RANGE的使用 CREATE TABLE ORDERS_TIME ( ORDER_DATE DATE, AMOUNT NUMBER ); INSERT INTO ORDERS_TIME VALUES(TO_DATE('1999-01-01','YYYY-MM-DD'),100); INSERT INTO ORDERS_TIME VALUES(TO_DATE('2000-01-01','YYYY-MM-DD'),50); INSERT INTO ORDERS_TIME VALUES(TO_DATE('1999-01-01','YYYY-MM-DD'),30); INSERT INTO ORDERS_TIME VALUES(TO_DATE('2000-01-03','YYYY-MM-DD'),20); INSERT INTO ORDERS_TIME VALUES(TO_DATE('2000-01-02','YYYY-MM-DD'),200); COMMIT; SELECT * FROM ORDERS_TIME; ORDER_DATE AMOUNT -------------- ---------- 1999/1/1 100 2000/1/1 50 1999/1/1 30 2000/1/3 20 2000/1/2 200 2000/2/2 200 SELECT ORDER_DATE,SUM(AMOUNT), SUM(SUM(AMOUNT)) OVER(ORDER BY ORDER_DATE RANGE BETWEEN INTERVAL '1' DAY PRECEDING AND INTERVAL '1' DAY FOLLOWING) SALES FROM ORDERS_TIME GROUP BY ORDER_DATE; ORDER_DATE SUM(AMOUNT) SALES ---------- -------- ----- 1999/1/1 130 130 2000/1/1 50 250 2000/1/2 200 270 2000/1/3 20 220 2000/2/2 200 200 --RANGE及interval关键字用于统计当前日期的销售额+前一天+后一天 ---窗口函数进阶--比较相邻 SELECT ORDER_DATE,SUM(AMOUNT), LAG(SUM(AMOUNT),1,NULL) OVER(ORDER BY ORDER_DATE) PRE_SALES, LEAD(SUM(AMOUNT),1,NULL) OVER(ORDER BY ORDER_DATE) NEXT_SALES FROM ORDERS_TIME GROUP BY ORDER_DATE; --,数据的偏移量默认是1,若没有下一个值,用null来代替 --也可以加partition by进行分组,然后当寻找上一个/下一个值时,只在组内寻找 ---------------------------------------------------------------------------------------------------------------------------------------- --五 分析函数之报表函数 --统计每个客户的销量占区域销量的比例,采用比较常规方法 SELECT CUST_NBR, REGION_ID, SUM(TOT_SALES) CUST_SALES, 100*ROUND(SUM(TOT_SALES)/SUM(SUM(TOT_SALES)) OVER(PARTITION BY REGION_ID),2)||'%' PERCENT FROM ORDERS_TMP O GROUP BY REGION_ID, CUST_NBR; CUST_NBR REGION_ID CUST_SALES PERCENT ---------- ---------- ---------- ------------------------- 4 5 37802 100% 7 6 3705 5% 10 6 64315 95% 11 7 12204 100% --下面使用报表函数RATIO_TO_REPORT SELECT CUST_NBR, REGION_ID, SUM(TOT_SALES) CUST_SALES, 100*ROUND(RATIO_TO_REPORT((SUM(TOT_SALES))) OVER(PARTITION BY REGION_ID),2)||'%' PERCENT FROM ORDERS_TMP O GROUP BY REGION_ID, CUST_NBR; CUST_NBR REGION_ID CUST_SALES PERCENT ---------- ---------- ---------- --------------------- 4 5 37802 100% 7 6 3705 5% 10 6 64315 95% 11 7 12204 100% --结果是一样的,Oracle提供的Ratio_to_report函数统计每条记录在其子集中所占的比例 --本文章参考 --http://wenku.baidu.com/view/6694a7225901020207409c5d.html
相关推荐
其中,Oracle的分析函数是其强大的特性之一,它允许用户在单个SQL查询中执行复杂的分析操作,而无需使用子查询或者自连接。这篇文档将深入探讨Oracle中的分析函数,帮助你更好地理解和利用这一功能。 一、什么是...
Oracle分析函数是数据库管理系统Oracle中的一种高级特性,自Oracle 8.1.6版本开始引入,主要用于处理复杂的聚合计算和数据分析任务。它们提供了一种更高效、更灵活的方式来执行诸如累计计算、分组内的百分比计算、前...
1 Oracle开发专题之:分析函数 OVER 2 Oracle开发专题之:分析函数 Rank Dense rank row number 3 Oracle开发专题之:分析函数3 Top Bottom N First Last NTile 4 Oracle开发专题之:窗口函数 5 Oracle开发专题...
Oracle分析函数是数据库管理系统Oracle中的一种高级查询工具,主要用于处理多行数据并返回与每一行相关的聚合信息。这些函数在在线分析处理(OLAP)环境中特别有用,因为它们能够对数据进行复杂的分析,例如计算累计...
### Oracle分析函数详解 #### 一、Oracle分析函数概述 Oracle分析函数是在处理大量数据时极为有用的一套工具,主要用于在线分析处理(OLAP)场景。这类函数可以在多个级别上进行数据聚合,并支持复杂的排序、分组...
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它允许用户对分组数据执行复杂的计算,并且结果可以根据特定条件进行动态调整。这种灵活性使得Oracle分析函数在处理复杂的数据集时非常...
Oracle 分析函数详解 Oracle 分析函数是 Oracle 数据库中的一种强大功能,能够帮助用户快速进行数据分析和处理。在本文中,我们将对 Oracle 分析函数进行详细的介绍,并对其各个函数进行解释。 一、总体介绍 ...
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它自Oracle 8.1.6版本开始引入,并在后续版本中不断完善和发展。这类函数的主要用途在于能够针对一组数据执行复杂的聚合计算,并且不同于...
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它允许用户对分组数据执行复杂的计算,并且能够返回多个结果行。这与传统的聚合函数(如`SUM`、`COUNT`等)形成鲜明对比,后者通常只针对...
### Oracle分析函数详解 #### 一、Oracle分析函数概述 Oracle分析函数是在处理大量数据时极为有用的一套工具,主要用于在线分析处理(OLAP)场景。这类函数可以在多个级别上进行数据聚合,并支持复杂的排序、分组...
### Oracle分析函数详解 #### 一、引言与背景 在数据库领域,Oracle数据库因其卓越的性能和丰富的功能而备受企业级应用的青睐。在众多的功能中,分析函数(Analytic Function)是一种强大的工具,它允许用户在不...
### Oracle分析函数详解 #### 一、Oracle分析函数概述 Oracle分析函数,也称为窗口函数,是一种高级查询技术,主要用于处理复杂的数据分析需求,尤其是在OLAP(在线分析处理)场景中,它们能够对数据进行多层次的...
### Oracle分析函数详解 #### 一、Oracle分析函数概述 Oracle分析函数,也称为窗口函数,是一种高级查询技术,主要用于处理复杂的数据分析需求,尤其是在OLAP(在线分析处理)环境中。与传统的SQL函数不同,分析...