决策树(DTs),是一种无参数的监督学习方法,用来分类和回归,目标是建立一个模型,可以通过学习数据特征的简单决策规则来预测目标属性的值。
如下图所示,决策树的输入数据近似正弦曲线,规则为if-then-else的规则集。树越深,抉择规则越复杂。
决策树的优点:
(1)便于理解和解释。树是可视化的。
(2)值需要少量的数据准备工作。其它的方法需要数据正式化、需要创建虚拟值并且空值需要清理掉。但是,需要注意的是,这个模型不支持缺失的属性值。
(3)训练树的复杂度是log级别的
(4)能够同时处理数值和分类数据。其它的方法一般只能处理一种数据。
(5)可以支持多输出
(6)使用白盒模型。模型的训练结果很容易解释。如果是在黑盒模型中(比如人工神经网络中),结果可能比较难解释。
(7)可以使用统计测试来评估模型。
(8) 即使由真实模型产出的数据和假设违背,该模型仍可用。
缺点是:
(1)决策树可以会生成很复杂的树,即过拟合。使用剪枝的方法,即设定叶子节点的最小数量或者设置树的最大深度可以避免过拟合。
(2)决策树是不稳定的因为有些数据可能会产出一个完全不同的树。这个问题可以通过使用一个决策树集合缓解。
(3)决策树的学习过程是一个NP完全问题,所以训练决策树学习的算法都是基于贪心算法,比如在每个节点取最优解。这种算法不能返回一个全局最优的决策树。这个问题可以通过放回的随机参数来训练多个树来解决。
(4)有些概念决策树表达不出来,比如XOR,对等关系和组合关系
(5)如果某些分类权重过大则可能造成产出的树有偏差,需要提前平衡数据集来修正决策树。
相关推荐
基于MapReduce实现决策树算法的知识点 基于MapReduce实现决策树算法是一种使用MapReduce框架来实现决策树算法的方法。在这个方法中,主要使用Mapper和Reducer来实现决策树算法的计算。下面是基于MapReduce实现决策...
决策树是一种广泛应用于数据分析和机器学习的算法,尤其在分类问题中表现突出。在这个"决策树分类实验(乳腺癌)"中,我们看到一个利用决策树进行乳腺癌预测的实例。该实验基于wpbc(Wisconsin Breast Cancer)数据...
对于正确率相同的节点,选取优先遍历的属性作为根节点,与基于信息增益进行划分选择的方法相比,可知两种方法绘制的决策树正确率均为100%,但对率回归方法容易忽略在同一正确率下划分较佳的节点,从而使决策树层数...
决策树算法经典优秀论文(1).zip 决策树算法经典优秀论文(1).zip 决策树算法经典优秀论文(1).zip 决策树算法经典优秀论文(1).zip 决策树算法经典优秀论文(1).zip 决策树算法经典优秀论文(1).zip 决策树算法经典优秀...
决策树是一种广泛应用于机器学习领域的算法,主要用于分类和回归任务。它通过构建一系列规则和条件来模拟人类的决策过程,从而对数据进行预测。Graphviz是一款强大的图形渲染工具,能够帮助我们可视化这些决策树模型...
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画...
决策树算法是数据挖掘和机器学习领域中一个非常重要的分类方法,它通过一系列规则对数据集进行分治,直到每个分支都对应一个单一的类别为止。决策树是基于监督学习方法实现的,这意味着它需要一个事先已标记的数据集...
在本次"决策树实验内容2"中,我们将深入探讨决策树这一重要的机器学习算法,主要分为以下几个部分: **1.1 决策树处理分类任务** 在这个环节,我们将使用`sklearn.tree.DecisionTreeClassifier`来解决Dota2比赛...
第二步,决策树的剪枝:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除...
决策树回归算法是一种基础的机器学习算法,主要用于回归分析,在分类问题中也有应用。其核心思想是将特征空间划分成若干个子空间,每个子空间都有一个对应的输出值,这种方法特别适合处理具有层次关系的问题。 首先...
决策树是一种广泛应用于数据分析、机器学习以及人工智能领域的算法模型,它通过模拟人类做决策的过程,以树状结构来表示可能的决策路径和结果。在这个"决策树资料合集"中,包含了关于决策树的源文件、实例、内容详解...
决策树是一种常用的数据挖掘工具,尤其在预测任务中表现出色,如天气预测。在这个场景中,我们使用MATLAB作为编程环境来实现决策树算法。MATLAB不仅提供了强大的数学计算功能,还内置了丰富的数据处理和机器学习库,...
### 广工人工智能决策树知识点解析 #### 一、决策树概述 决策树是一种常用的机器学习方法,尤其在监督学习中被广泛应用于分类与回归任务。它通过一系列判断条件来划分数据集,最终达到对未知数据进行预测的目的。...
【基于决策树的鸢尾花分类】 决策树是一种广泛应用的机器学习算法,尤其适用于分类问题。在本案例中,鸢尾花的分类是基于决策树模型进行的。鸢尾花有三个不同种类:Iris Setosa (Se),Iris Versicolour (Ve),和 ...
在这个实验中,我们利用决策树算法来实现这一目标。决策树是一种直观且易于理解的监督学习方法,常用于分类任务。 决策树的工作原理是通过一系列的“如果-那么”规则来构建一个树形结构,每个内部节点代表一个特征...
决策树ID3算法实现 本文档旨在讲解决策树ID3算法的实现,通过C++语言编写的源代码来实现决策树和决策树对应的规则集。 一、决策树概述 决策树是一种常用的机器学习算法,用于分类和预测问题。决策树由节点和边...
决策树是一种广泛应用于数据分析和机器学习的算法,尤其在分类问题中表现突出。它通过构建一个树状模型来做出预测,每个内部节点代表一个特征,每个分支代表该特征的一个值,而叶节点则对应于一个类别或连续值的预测...
决策树是一种广泛应用于数据挖掘和机器学习的算法,它的核心思想是通过一系列的规则划分,将数据集分割成不同的类别。在这个案例中,我们将详细探讨如何利用Python来实现决策树对鸢尾花数据集的分类,并对其进行可视...
4.3 编程实现基于信息熵进行划分选择的决策树算法,并为西瓜数据集3.0中的数据生成一颗决策树。 4.4 编程实现基于基尼指数进行划分选择的决策树算法,为西瓜数据集2.0生成预剪枝、后剪枝决策树,并与未剪枝决策树...
决策树是一种广泛应用于模式识别和数据挖掘的机器学习算法,它的主要任务是通过构建一棵树状模型来实现对数据的分类或回归。在这个程序中,我们重点探讨的是决策树在模式识别中的应用,以及它是如何用C语言实现的。 ...