`
xy_z487
  • 浏览: 281609 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

VO , PO , BO , QO, DAO ,POJO

阅读更多

VO , PO , BO , QO, DAO ,POJO

O/R Mapping 是 Object Relational Mapping (对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在 O/R Mapping 的世界里,有两个基本的也是重要的东东需要了解,即 VO , PO 。

VO ,值对象 (Value Object) ,PO ,持久对象 (Persisent Object)
它们是由一组属性和属性的 get 和 set 方法组成。从结构上看,它们并没有什么不同的地方。但从其意义和本质上来看是完全不同的。

1. VO 是用 new 关键字创建,由 GC 回收的。
PO 则是向数据库中添加新数据时创建,删除数据库中数据时削除的。并且它只能存活在一个数据库连接中,断开连接即被销毁。

2. VO 是值对象,精确点讲它是业务对象,是存活在业务层的,是业务逻辑使用的,它存活的目的就是为数据提供一个生存的地方。
PO 则是有状态的,每个属性代表其当前的状态。它是物理数据的对象表示。使用它,可以使我们的程序与物理数据解耦,并且可以简化对象数据与物理数据之间的转换。
3. VO 的属性是根据当前业务的不同而不同的,也就是说,它的每一个属性都一一对应当前业务逻辑所需要的数据的名称。PO 的属性是跟数据库表的字段一一对应的。PO 对象需要实现序列化接口。
-------------------------------------------------

java 的 (PO,VO,TO,BO,DAO,POJO) 解释

PO(persistant object) 持久对象
在 o/r 映射的时候出现的概念,如果没有 o/r 映射,没有这个概念存在了。通常对应数据模型 ( 数据库 ), 本身还有部分业务逻辑的处理。可以看成是与数据库中的表相映射的 java 对象。最简单的 PO 就是对应数据库中某个表中的一条记录,多个记录可以用 PO 的集合。 PO 中应该不包含任何对数据库的操作。

VO(value object) 值对象
通常用于业务层之间的数据传递,和 PO 一样也是仅仅包含数据而已。但应是抽象出的业务对象 , 可以和表对应 , 也可以不 , 这根据业务的需要 . 个人觉得同 DTO( 数据传输对象 ), 在 web 上传递。

TO(Transfer Object) ,数据传输对象
在应用程序不同 tie( 关系 ) 之间传输的对象

BO(business object) 业务对象
从业务模型的角度看 , 见 UML 元件领域模型中的领域对象。封装业务逻辑的 java 对象 , 通过调用 DAO 方法 , 结合 PO,VO 进行业务操作。
business object: 业务对象主要作用是把业务逻辑封装为一个对象。这个对象可以包括一个或多个其它的对象。比如一个简历,有教育经历、工作经历、社会关系等等。我们可以把教育经历对应一个 PO ,工作经历对应一个 PO ,社会关系对应一个 PO 。建立一个对应简历的 BO 对象处理简历,每个 BO 包含这些 PO 。这样处理业务逻辑时,我们就可以针对 BO 去处理。

QO :查询对象

POJO(plain ordinary java object) 简单无规则 java 对象,纯的传统意义的 java 对象。
就是说在一些 Object/Relation Mapping 工具中,能够做到维护数据库表记录的 persisent
object 完全是一个符合 Java Bean 规范的纯 Java 对象,没有增加别的属性和方法。我的理解就是最基本的 Java Bean ,只有属性字段及 setter 和 getter 方法!。

DAO(data access object) 数据访问对象
是一个 sun 的一个标准 j2ee 设计模式, 这个模式中有个接口就是 DAO ,它负持久层的操作。为业务层提供接口。此对象用于访问数据库。通常和 PO 结合使用, DAO 中包含了各种数据库的操作方法。通过它的方法 , 结合 PO 对数据库进行相关的操作。夹在业务逻辑与数据库资源中间。配合 VO,提供数据库的 CRUD 操作 ...

DTO (Data Transfer Object 数据传输对象)
主要用于远程调用等需要大量传输对象的地方。比如我们一张表有 100 个字段,那么对应的 PO 就有 100 个属性。但是我们界面上只要显示 10 个字段,客户端用 WEB service 来获取数据,没有必要把整个 PO 对象传递到客户端,这时我们就可以用只有这 10 个属性的 DTO 来传递结果到客户端,这样也不会暴露服务端表结构 . 到达客户端以后,如果用这个对象来对应界面显示,那此时它的身份就转为 VO
DAO :数据访问对象 —— 同时还有 DAO 模式
DTO :数据传输对象 —— 同时还有 DTO 模式

O/R Mapper 对象 / 关系 映射
定义好所有的 mapping 之后,这个 O/R Mapper 可以帮我们做很多的工作。通过这些 mappings, 这个 O/R Mapper 可以生成所有的关于对象保存,删除,读取的 SQL 语句,我们不再需要写那么多行的 DAL 代码了。

实体 Model( 实体模式 )
DAL( 数据访问层 )
IDAL( 接口层 )
DALFactory( 类工厂 )
BLL( 业务逻辑层 )
BOF     Business Object Framework       业务对象框架
SOA     Service Orient Architecture     面向服务的设计
EMF     Eclipse Model Framework        
Eclipse 建模框架
---------------------------------------------------------------------------
总结:

VO:值对象、视图对象
PO:持久对象
QO:查询对象
DAO:数据访问对象
DTO:数据传输对象


pojo = plain old java objects
vo = values objects
po =persisent objec
  
POJO = pure old java object or plain ordinary java object or what ever.
PO = persisent object 持久对象

就是说在一些Object/Relation Mapping工具中,能够做到维护数据库表记录的persisent object完全是一个符合Java Bean规范的纯Java对象,没有增加别的属性和方法。全都是这样子的:

java代码:  
public class User {
   private long id;
private String name;
   public void setId(long id ) {
   this.id = id;
}  
public void setName( String name) {
   this.name=name;
   }
   public long getId() {
   return id;
   }  
public String getName() {
return name;
       }
}

首先要区别持久对象和POJO。
持久对象实际上必须对应数据库中的entity,所以和POJO有所区别。比如说POJO是由new创建,由GC回收。但是持久对象是insert数据库创建,由数据库delete删除的。基本上持久对象生命周期和数据库密切相关。另外持久对象往往只能存在一个数据库Connection之中, Connnection关闭以后,持久对象就不存在了,而POJO只要不被GC回收,总是存在的。
由于存在诸多差别,因此持久对象PO(Persistent Object)在代码上肯定和POJO不同,起码PO相对于POJO会增加一些用来管理数据库entity状态的属性和方法。而ORM追求的目标就是要 PO在使用上尽量和POJO一致,对于程序员来说,他们可以把PO当做POJO来用,而感觉不到PO的存在。

JDO的实现方法是这样的:
1、编写POJO
2、编译POJO
3、使用JDO的一个专门工具,叫做Enhancer,一般是一个命令行程序,手工运行,或者在ant脚本里面运行,对POJO的class文件处理一下,把POJO替换成同名的PO。
4、在运行期运行的实际上是PO,而不是POJO。

该方法有点类似于JSP,JSP也是在编译期被转换成Servlet来运行的,在运行期实际上运行的是Servlet,而不是JSP。

Hibernate的实现方法比较先进:
1、编写POJO
2、编译POJO
3、直接运行,在运行期,由Hibernate的CGLIB动态把POJO转换为PO。

由此可以看出Hibernate是在运行期把POJO的字节码转换为PO的,而JDO是在编译期转换的。一般认为JDO的方式效率会稍高,毕竟是编译期转换嘛。但是Hibernate的作者Gavin King说CGLIB的效率非常之高,运行期的PO的字节码生成速度非常之快,效率损失几乎可以忽略不计。
实际上运行期生成PO的好处非常大,这样对于程序员来说,是无法接触到PO的,PO对他们来说完全透明。可以更加自由的以POJO的概念操纵 PO。另外由于是运行期生成PO,所以可以支持增量编译,增量调试。而JDO则无法做到这一点。实际上已经有很多人在抱怨JDO的编译期Enhancer 问题了,而据说JBossDO将采用运行期生成PO字节码,而不采用编译期生成PO字节码。
另外一个相关的问题是,不同的JDO产品的Enhancer生成的PO字节码可能会有所不同,可能会影响在JDO产品之间的可移植性,这一点有点类似EJB的可移植性难题。

由这个问题另外引出一个JDO的缺陷。
由于JDO的PO状态管理方式,所以当你在程序里面get/set的时候,实际上不是从PO的实例中取values,而是从JDO StateManager中取出来,所以一旦PM关闭,PO就不能进行存取了。
在JDO中,也可以通过一些办法使得PO可以在PM外面使用,比如说定义PO是transient的,但是该PO在PM关闭后就没有PO identity了。无法进行跨PM的状态管理。
而Hibernate是从PO实例中取values的,所以即使Session关闭,也一样可以get/set,可以进行跨Session的状态管理。
在分多层的应用中,由于持久层和业务层和web层都是分开的,此时Hibernate的PO完全可以当做一个POJO来用,也就是当做一个VO,在各层间自由传递,而不用去管Session是开还是关。如果你把这个POJO序列化的话,甚至可以用在分布式环境中。(不适合lazy loading的情况)
但是JDO的PO在PM关闭后就不能再用了,所以必须在PM关闭前把PO拷贝一份VO,把VO传递给业务层和web层使用。在非分布式环境中,也可以使用ThreadLocal模式确保PM始终是打开状态,来避免每次必须进行PO到VO的拷贝操作。但是不管怎么说,这总是权宜之计,不如 Hibernate的功能强。

分享到:
评论
1 楼 javamonkey 2010-09-14  
无论何种O,都没有考虑到展示的问题。

相关推荐

    java中PO、VO、BO、POJO、DAO、DTO、TO、QO、Bean、conn的理解

    Java 中 PO、VO、BO、POJO、DAO、DTO、TO、QO、Bean、conn 的理解 PO(Persistent Object):持久对象,指的是在 O/R Mapping 中将对象与关系数据库绑定的对象。PO 是由一组属性和属性的 get 和 set 方法组成。它...

    拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf

    拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf

    电力市场领域中基于CVaR风险评估的省间交易商最优购电模型研究与实现

    内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。

    MATLAB/Simulink平台下四机两区系统风储联合调频技术及其高效仿真实现

    内容概要:本文探讨了在MATLAB/Simulink平台上针对四机两区系统的风储联合调频技术。首先介绍了四机两区系统作为经典的电力系统模型,在风电渗透率增加的情况下,传统一次调频方式面临挑战。接着阐述了风储联合调频技术的应用,通过引入虚拟惯性控制和下垂控制策略,提高了系统的频率稳定性。文章展示了具体的MATLAB/Simulink仿真模型,包括系统参数设置、控制算法实现以及仿真加速方法。最终结果显示,在风电渗透率为25%的情况下,通过风储联合调频,系统频率特性得到显著提升,仿真时间缩短至5秒以内。 适合人群:从事电力系统研究、仿真建模的技术人员,特别是关注风电接入电网稳定性的研究人员。 使用场景及目标:适用于希望深入了解风储联合调频机制及其仿真实现的研究人员和技术开发者。目标是掌握如何利用MATLAB/Simulink进行高效的电力系统仿真,尤其是针对含有高比例风电接入的复杂场景。 其他说明:文中提供的具体参数配置和控制算法有助于读者快速搭建类似的仿真环境,并进行相关研究。同时强调了参考文献对于理论基础建立的重要性。

    永磁同步电机无感控制:高频方波注入与滑膜观测器结合实现及其应用场景

    内容概要:本文介绍了永磁同步电机(PMSM)无感控制技术,特别是高频方波注入与滑膜观测器相结合的方法。首先解释了高频方波注入法的工作原理,即通过向电机注入高频方波电压信号,利用电机的凸极效应获取转子位置信息。接着讨论了滑膜观测器的作用,它能够根据电机的电压和电流估计转速和位置,具有较强的鲁棒性。两者结合可以提高无传感器控制系统的稳定性和精度。文中还提供了具体的Python、C语言和Matlab代码示例,展示了如何实现这两种技术。此外,简要提及了正弦波注入的相关论文资料,强调了其在不同工况下的优势。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,尤其是对永磁同步电机无感控制感兴趣的读者。 使用场景及目标:适用于需要减少传感器依赖、降低成本并提高系统可靠性的情况,如工业自动化设备、电动汽车等领域的电机控制。目标是掌握高频方波注入与滑膜观测器结合的具体实现方法,应用于实际工程项目中。 其他说明:文中提到的高频方波注入和滑膜观测器的结合方式,不仅提高了系统的性能,还在某些特殊情况下表现出更好的适应性。同时,附带提供的代码片段有助于读者更好地理解和实践这一技术。

    MATLAB中扩展卡尔曼滤波与双扩展卡尔曼滤波在电池参数辨识的应用

    内容概要:本文深入探讨了MATLAB中扩展卡尔曼滤波(EKF)和双扩展卡尔曼滤波(DEKF)在电池参数辨识中的应用。首先介绍了EKF的基本原理和代码实现,包括状态预测和更新步骤。接着讨论了DEKF的工作机制,即同时估计系统状态和参数,解决了参数和状态耦合估计的问题。文章还详细描述了电池参数辨识的具体应用场景,特别是针对电池管理系统中的荷电状态(SOC)估计。此外,提到了一些实用技巧,如雅可比矩阵的计算、参数初始值的选择、数据预处理方法等,并引用了几篇重要文献作为参考。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对状态估计和参数辨识感兴趣的读者。 使用场景及目标:适用于需要精确估计电池参数的实际项目,如电动汽车、储能系统等领域。目标是提高电池管理系统的性能,确保电池的安全性和可靠性。 其他说明:文章强调了实际应用中的注意事项,如数据处理、参数选择和模型优化等方面的经验分享。同时提醒读者关注最新的研究成果和技术进展,以便更好地应用于实际工作中。

    基于三菱FX3U PLC和威纶通触摸屏的分切机上下收放卷张力控制系统设计

    内容概要:本文详细介绍了在无电子凸轮功能情况下,利用三菱FX3U系列PLC和威纶通触摸屏实现分切机上下收放卷张力控制的方法。主要内容涵盖硬件连接、程序框架设计、张力检测与读取、PID控制逻辑以及触摸屏交互界面的设计。文中通过具体代码示例展示了如何初始化寄存器、读取张力传感器数据、计算张力偏差并实施PID控制,最终实现稳定的张力控制。此外,还讨论了卷径计算、速度同步控制等关键技术点,并提供了现场调试经验和优化建议。 适合人群:从事自动化生产设备维护和技术支持的专业人士,尤其是熟悉PLC编程和触摸屏应用的技术人员。 使用场景及目标:适用于需要对分切机进行升级改造的企业,旨在提高分切机的张力控制精度,确保材料切割质量,降低生产成本。通过本方案可以实现±3%的张力控制精度,满足基本生产需求。 其他说明:本文不仅提供详细的程序代码和硬件配置指南,还分享了许多实用的调试技巧和经验,帮助技术人员更好地理解和应用相关技术。

    基于S7系列PLC与组态王的三泵变频恒压供水系统设计与实现

    内容概要:本文详细介绍了一种基于西门子S7-200和S7-300 PLC以及组态王软件的三泵变频恒压供水系统。主要内容涵盖IO分配、接线图原理图、梯形图程序编写和组态画面设计四个方面。通过合理的硬件配置和精确的编程逻辑,确保系统能够在不同负载情况下保持稳定的供水压力,同时实现节能和延长设备使用寿命的目标。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和组态软件使用的专业人士。 使用场景及目标:适用于需要稳定供水的各种场合,如住宅小区、工厂等。目标是通过优化控制系统,提升供水效率,减少能源消耗,并确保系统的可靠性和安全性。 其他说明:文中提供了详细的实例代码和调试技巧,帮助读者更好地理解和实施该项目。此外,还分享了一些实用的经验教训,有助于避免常见的错误和陷阱。

    三相三线制SVG/STATCOM的Simulink仿真建模与控制策略解析

    内容概要:本文详细介绍了三相三线制静止无功发生器(SVG/STATCOM)在Simulink中的仿真模型设计与实现。主要内容涵盖ip-iq检测法用于无功功率检测、dq坐标系下的电流解耦控制、电压电流双闭环控制系统的设计、SVPWM调制技术的应用以及具体的仿真参数设置。文中不仅提供了理论背景,还展示了具体的Matlab代码片段,帮助读者理解各个控制环节的工作原理和技术细节。此外,文章还讨论了实际调试中遇到的问题及解决方案,强调了参数调整的重要性。 适合人群:从事电力系统自动化、电力电子技术研究的专业人士,特别是对SVG/STATCOM仿真感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解SVG/STATCOM工作原理并掌握其仿真方法的研究人员和工程师。目标是在实践中能够正确搭建和优化SVG/STATCOM的仿真模型,提高无功补偿的效果。 其他说明:文章提供了丰富的实例代码和调试技巧,有助于读者更好地理解和应用所学知识。同时,文中提及的一些经验和注意事项来源于实际项目,具有较高的参考价值。

    基于SIMULINK的风力机发电效率建模探究.pdf

    基于SIMULINK的风力机发电效率建模探究.pdf

    CarSim与Simulink联合仿真:基于MPC模型预测控制实现智能超车换道

    内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。

    基于MATLAB的信号与系统实验:常见信号生成、卷积积分、频域分析及Z变换详解

    内容概要:本文详细介绍了利用MATLAB进行信号与系统实验的具体步骤和技术要点。首先讲解了常见信号(如方波、sinc函数、正弦波等)的生成方法及其注意事项,强调了时间轴设置和参数调整的重要性。接着探讨了卷积积分的两种实现方式——符号运算和数值积分,指出了各自的特点和应用场景,并特别提醒了数值卷积时的时间轴重构和步长修正问题。随后深入浅出地解释了频域分析的方法,包括傅里叶变换的符号计算和快速傅里叶变换(FFT),并给出了具体的代码实例和常见错误提示。最后阐述了离散时间信号与系统的Z变换分析,展示了如何通过Z变换将差分方程转化为传递函数以及如何绘制零极点图来评估系统的稳定性。 适合人群:正在学习信号与系统课程的学生,尤其是需要完成相关实验任务的人群;对MATLAB有一定基础,希望通过实践加深对该领域理解的学习者。 使用场景及目标:帮助学生掌握MATLAB环境下信号生成、卷积积分、频域分析和Z变换的基本技能;提高学生解决实际问题的能力,避免常见的编程陷阱;培养学生的动手能力和科学思维习惯。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的小技巧,如如何正确保存实验结果图、如何撰写高质量的实验报告等。同时,作者以幽默风趣的语言风格贯穿全文,使得原本枯燥的技术内容变得生动有趣。

    【KUKA 机器人移动编程】:mo2_motion_ptp_en.ppt

    KUKA机器人相关文档

    永磁同步电机(PMSM)无传感器控制:I/F启动与滑模观测器结合的技术实现及应用

    内容概要:本文详细介绍了无传感器永磁同步电机(PMSM)控制技术,特别是针对低速和中高速的不同控制策略。低速阶段采用I/F控制,通过固定电流幅值和斜坡加速的方式启动电机,确保平稳启动。中高速阶段则引入滑模观测器进行反电动势估算,从而精确控制电机转速。文中还讨论了两者之间的平滑切换逻辑,强调了参数选择和调试技巧的重要性。此外,提供了具体的伪代码示例,帮助读者更好地理解和实现这一控制方案。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要降低成本并提高可靠性的应用场景,如家用电器、工业自动化设备等。主要目标是掌握无传感器PMSM控制的基本原理及其优化方法。 其他说明:文中提到的实际案例和测试数据有助于加深理解,同时提醒开发者注意硬件参数准确性以及调试过程中可能出现的问题。

    智能家居与物联网培训材料.ppt

    智能家居与物联网培训材料.ppt

    Matlab实现车辆路径规划:基于TSP、CVRP、CDVRP、VRPTW的四大算法解析及应用

    内容概要:本文详细介绍了使用Matlab解决车辆路径规划问题的四种经典算法:TSP(旅行商问题)、CVRP(带容量约束的车辆路径问题)、CDVRP(带容量和距离双重约束的车辆路径问题)和VRPTW(带时间窗约束的车辆路径问题)。针对每个问题,文中提供了具体的算法实现思路和关键代码片段,如遗传算法用于TSP的基础求解,贪心算法和遗传算法结合用于CVRP的路径分割,以及带有惩罚函数的时间窗约束处理方法。此外,还讨论了性能优化技巧,如矩阵运算替代循环、锦标赛选择、2-opt局部优化等。 适合人群:具有一定编程基础,尤其是对物流调度、路径规划感兴趣的开发者和技术爱好者。 使用场景及目标:适用于物流配送系统的路径优化,旨在提高配送效率,降低成本。具体应用场景包括但不限于外卖配送、快递运输等。目标是帮助读者掌握如何利用Matlab实现高效的路径规划算法,解决实际业务中的复杂约束条件。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实践经验,如参数设置、数据预处理、异常检测等。建议读者在实践中不断尝试不同的算法组合和优化策略,以应对更加复杂的实际问题。

    软考网络工程师2010-2014真题及答案

    软考网络工程师2010-2014真题及答案完整版 全国计算机软考 适合软考中级人群

    基于单片机的酒驾检测设计(51+1602+PCF8591+LED+BZ+KEY3)#0055

    包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示:测量酒精值、酒驾阈值、醉驾阈值; 3、采用PCF8591进行AD模数转换; 4、LED指示:正常绿灯、酒驾黄灯、醉驾红灯; 5、可通过按键修改酒驾醉驾阈值;

    基于MATLAB的拉格朗日函数与SQP二次规划方法实现约束最优化求解

    内容概要:本文详细介绍了利用MATLAB实现约束最优化求解的方法,主要分为两大部分:无约束优化和带约束优化。对于无约束优化,作者首先讲解了梯度下降法的基本原理和实现技巧,如步长搜索和Armijo条件的应用。接着深入探讨了带约束优化问题,特别是序列二次规划(SQP)方法的具体实现,包括拉格朗日函数的Hesse矩阵计算、QP子问题的构建以及拉格朗日乘子的更新策略。文中不仅提供了详细的MATLAB代码示例,还分享了许多调参经验和常见错误的解决办法。 适合人群:具备一定数学基础和编程经验的研究人员、工程师或学生,尤其是对最优化理论和应用感兴趣的读者。 使用场景及目标:适用于需要解决各类优化问题的实际工程项目,如机械臂能耗最小化、化工过程优化等。通过学习本文,读者能够掌握如何将复杂的约束优化问题分解为更易处理的二次规划子问题,从而提高求解效率和准确性。 其他说明:文章强调了优化算法选择的重要性,指出不同的问题结构决定了最适合的算法。此外,作者还分享了一些实用的经验教训,如Hesse矩阵的正定性处理和惩罚因子的动态调整,帮助读者少走弯路。

    【KUKA 机器人资料】:KUKA机器人剑指未来——访库卡自动化设备(上海)有限公司销售部经理邹涛.pdf

    KUKA机器人相关资料

Global site tag (gtag.js) - Google Analytics