客户端相关参数
参数 | 默认值 | 含义 |
hbase.htable.threads.max | 2147483647 | 线程池中的线程数量 |
hbase.htable.threads.keepalivetime | 60秒 | keepalive时间 |
hbase.client.pause | 1秒 | 重试的休眠时间 |
hbase.client.retries.number | 10 | 重试次数 |
hbase.client.rpc.maxattempts | 1 | |
hbase.rpc.timeout | 60秒 | |
hbase.client.prefetch.limit | 10 | |
hbase.client.write.buffer | 2097152 | |
hbase.client.scanner.caching | 1 | 一次从服务端抓取的数量 |
hbase.client.keyvalue.maxsize | -1 | |
hbase.meta.scanner.caching | 100 |
在连接之前会创建如下信息
ZooKeeperWatcher
ClusterId获取/hbase/hbaseid
MasterAddressTracker获取/hbase/master
RootRegionTracker获取/hbase/root-region-server(也是-ROOT-表所在的机器)
RCP Engineorg.apache.hadoop.hbase.ipc.WritableRpcEngine
查询过程
org.apache.hadoop.hbase.client.HConnectionManager#locateRegion()函数主要逻辑如下
//假设此时请求一个test表 locateRegion() { ensureZookeeperTrackers(); //创建zookeeper相关连接并获取相关数据 if(当前表示root表) { //返回root表的连接 ServerName servername = this.rootRegionTracker.waitRootRegionLocation(this.rpcTimeout); return new HRegionLocation(HRegionInfo.ROOT_REGIONINFO, servername.getHostname(), servername.getPort()); } else if(当前表是meta表) { locateRegion("-ROOT-") } else { locateRegionInMeta(".META.") } }
调用的堆栈图如下
堆栈执行过程
6.waitRootRegionLocation() 检查/hbase的znode节点是否存在 | | 5.locateRegion() | | 4.locateRegionInMeta() 在查找META表之前需要先找到ROOT表 | | 3.locateRegion() | | 2.locateRegionInMeta() 在查找test表之前首先需要找到META表 | | 1.locateRegion()
ROOT表和META表内容
root表
row | column | value |
.META.,,1 | info:regioninfo |
NAME => '.META.,,1', STARTKEY => '', ENDKEY => '', ENCODED => 1028785192, |
.META.,,1 | info:server | myRegionServerA:60020 |
.META.,,1 | info:serverstartcode | 1423222810704 |
.META.,,1 | info:v | \x00\x00 |
meta表
row | column | value |
test,,1396452445291.79608271 b40352162a9f255817ce44bf. |
info:regioninfo |
NAME => 'test,,1396452445291.79608271b 40352162a9f255817ce44bf.', STARTKEY => '', ENDKEY => 'bbb_mykey98', ENCODED => 79608271b40352 162a9f255817ce44bf, |
test,,1396452445291.79608271 b40352162a9f255817ce44bf. |
info:server | myRegionServerF:60020 |
test,,1396452445291.79608271 b40352162a9f255817ce44bf. |
info:serverstartcode | 1410425110025 |
test,bbb_mykey99,1396452445 291.00f93d1c191a66031ece7a 4ce0eac493. |
info:regioninfo |
NAME => 'kvdb,bbb_mykey99,13964524 45291.00f93d1c191a66031ece7a4ce0eac 493.', STARTKEY => 'bbb_mykey99', END KEY => 'fff_mykey', ENCODED => 00f93d 1c191a66031ece7a4ce0eac493, |
test,bbb_mykey99,1396452445 291.00f93d1c191a66031ece7a 4ce0eac493. |
info:server | myRegionServerC:60020 |
test,bbb_mykey99,1396452445 291.00f93d1c191a66031ece7a 4ce0eac493. |
info:serverstartcode | 1410425110025 |
zeroTable,,1423538052180.31 dd24d20f348098f3bf05313478177f. |
info:regioninfo |
NAME => 'zeroTable,,142353805218 0.31dd24d20f348098f3bf0531347817 7f.', STARTKEY => '', ENDKEY => 'zz_99', ENCODED => 31dd24d20f348098f3bf05313478177f, |
zeroTable,,1423538052180.31 dd24d20f348098f3bf05313478177f. |
info:server | myRegionServerB:60020 |
zeroTable,,1423538052180.31 dd24d20f348098f3bf05313478177f. |
info:serverstartcode | 1423222810704 |
root表的定位和查询过程
waitRootRegionLocation() 1.这里首先检查/hbase这个根节点是否存在,如果不存在直接返回false if (ZKUtil.checkExists(watcher, watcher.baseZNode) == -1) { return false; } 2.之后获取root表所在的机器信息(也就是/hbase/root-region-server节点信息) return dataToServerName(super.blockUntilAvailable(timeout, true)); 3.之后会触发一次RPC连接 HRegionInterface server = getHRegionConnection(metaLocation.getHostname(), metaLocation.getPort()); 最终会创建一个代理类,也就是一个RPC类,连接到-ROOT-表所在的机器 这个连接也会放到缓存中 4.之后会触发一次RPC请求,连接到ROOT表所在的机器,然后确定待查询的META信息在哪个机器上,这次会生成一个key为,可以看出这里的格式为 .META.,[表名],[第一个key这里是空着的],99999,99999 .META.,test,,99999999999999,99999999999999(也就是META表中关于test的第一条记录,两个9999都是固定加上的没有任何意义做) 如果线上环境数据量不是特别大的话,META表就只有一个region,反映到ROOT中就只有一个key(一个key有四个keyvalue,所以会有四条记录) 之后会返回这些跟META相关的数据
META表和一次get查询的定位过程
执行的主要逻辑如下:
1.根据ROOT表查到的META相关信息,比如通过ROOT获取到的信息如下 keyvalues={.META.,,1/info:regioninfo/1373105037550/Put/vlen=34/ts=0, .META.,,1/info:server/1410417243783/Put/vlen=15/ts=0, .META.,,1/info:serverstartcode/1410417243783/Put/vlen=8/ts=0, .META.,,1/info:v/1373105037550/Put/vlen=2/ts=0} 2.然后解析这个数据获取机器相关信息,再创建一个RPC连接到META机器上 3.执行一个MetaScanner#metaScan()查询 4.将获取的META主机信息缓存起来并返还 5.执行get查询 6.触发一次PRC查询,查询的key为zzzz_mykey,此时会先查询META表,key被封装为 test,zzzz_mykey,99999999999999这样的格式 7.再执行一次MetaScanner#metaScan()查询 8.像regionserver机器发起一次PRC查询并返还get查询的结果
MetaScanner#metaScan()逻辑
1.根据startRow(比如test,zzzz_mykey,99999999999999)获取一个结果集Result 这里的zzzz_mykey可以为空,这就相当于查询第一个key所在的region,返回的Result中就包含了这个 region的元信息(region的启动时间,ecode编码,机器名称等。当把key通过RPC发到服务端后, 服务端自动做前缀定位查询这个时间是固定的(第一个key和最后一个key定位时间相同) 2.解析结果并生成一个RegionInfo 3.创建Scan(默认获取10条结果) 这里的startRow就是刚刚Result中返回的信息 Scan scan = new Scan(startRow).addFamily("info") 4.遍历结果并将获取到的结果(主机信息)缓存起来
如果只是get查询的话,最后会返回这个机器的信息,然后向这个机器发起一次RPC请求,并返回最终结果。
get的执行过程
在代码中并不是调用ServerCallable,而是实现它的匿名内部类
HTable#get()函数如下
public Result get(final Get get) throws IOException { return new ServerCallable<Result>(connection, tableName, get.getRow(), operationTimeout) { public Result call() throws IOException { return server.get(location.getRegionInfo().getRegionName(), get); } }.withRetries(); }
ServerCallable#withRetries()函数简化内容
这里有一个重试的逻辑(默认10次),最后回调call()函数
当出现异常的时候,可能是因为region下线,分割等原因会尝试再次访问meta表并清空缓存中的内容
for (int tries = 0; tries < numRetries; tries++) { try { beforeCall(); connect(tries != 0); return call(); } catch (Throwable t) { shouldRetry(t); t = translateException(t); if (t instanceof SocketTimeoutException || t instanceof ConnectException || t instanceof RetriesExhaustedException) { // if thrown these exceptions, we clear all the cache entries that // map to that slow/dead server; otherwise, let cache miss and ask // .META. again to find the new location HRegionLocation hrl = location; if (hrl != null) { getConnection().clearCaches(hrl.getHostnamePort()); } } else if (t instanceof NotServingRegionException && numRetries == 1) { // Purge cache entries for this specific region from META cache // since we don't call connect(true) when number of retries is 1. getConnection().deleteCachedRegionLocation(location); } RetriesExhaustedException.ThrowableWithExtraContext qt = new RetriesExhaustedException.ThrowableWithExtraContext(t, System.currentTimeMillis(), toString()); exceptions.add(qt); if (tries == numRetries - 1) { throw new RetriesExhaustedException(tries, exceptions); } } finally { afterCall(); } try { Thread.sleep(ConnectionUtils.getPauseTime(pause, tries)); } catch (InterruptedException e) { Thread.currentThread().interrupt(); throw new IOException("Giving up after tries=" + tries, e); } } return null; } }
WritableRpcEngine#invoke()函数如下
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { final boolean logDebug = LOG.isDebugEnabled(); long startTime = 0; if (logDebug) { startTime = System.currentTimeMillis(); } HbaseObjectWritable value = (HbaseObjectWritable) client.call(new Invocation(method, protocol, args), address, protocol, ticket, rpcTimeout); return value.get(); } }
最终会调用到HBaseClient,然后发送一个socket请求
HBaseClient#call()函数如下
public Writable call(Writable param, InetSocketAddress addr, Class<? extends VersionedProtocol> protocol, User ticket, int rpcTimeout) throws InterruptedException, IOException { Call call = new Call(param); Connection connection = getConnection(addr, protocol, ticket, rpcTimeout, call); connection.sendParam(call); // send the parameter boolean interrupted = false; //noinspection SynchronizationOnLocalVariableOrMethodParameter synchronized (call) { while (!call.done) { try { call.wait(); // wait for the result } catch (InterruptedException ignored) { // save the fact that we were interrupted interrupted = true; } } if (interrupted) { // set the interrupt flag now that we are done waiting Thread.currentThread().interrupt(); } if (call.error != null) { if (call.error instanceof RemoteException) { call.error.fillInStackTrace(); throw call.error; } // local exception throw wrapException(addr, call.error); } return call.value; } }
HBaseClient#sendParam()函数如下
同步块中的 out.write(data, 0, dataLength);
是调用 org.apache.hadoop.net.SocketOutputStream底层是用NIO实现的
这里的call是HbaseClient的内部类Call,其发送的对象是Writable实现类,也就是可序列化的
Call中发送的参数是org.apache.hadoop.hbase.ipc.Invocation
发送的参数中包含两个值,一个是id,一个是对象(比如这里就是Get对象)
protected void sendParam(Call call) { if (shouldCloseConnection.get()) { return; } // For serializing the data to be written. final DataOutputBuffer d = new DataOutputBuffer(); try { d.writeInt(0xdeadbeef); // placeholder for data length d.writeInt(call.id); call.param.write(d); byte[] data = d.getData(); int dataLength = d.getLength(); // fill in the placeholder Bytes.putInt(data, 0, dataLength - 4); //noinspection SynchronizeOnNonFinalField synchronized (this.out) { // FindBugs IS2_INCONSISTENT_SYNC out.write(data, 0, dataLength); out.flush(); } } catch(IOException e) { markClosed(e); } finally { //the buffer is just an in-memory buffer, but it is still polite to // close early IOUtils.closeStream(d); } }
delete的执行过程
HTable#delete()内容如下:
注意如果是批量删除的话最终会异步执行,然后等待结果。如果只删除一条则同步执行
public void delete(final Delete delete) throws IOException { new ServerCallable<Boolean>(connection, tableName, delete.getRow(), operationTimeout) { public Boolean call() throws IOException { server.delete(location.getRegionInfo().getRegionName(), delete); return null; // FindBugs NP_BOOLEAN_RETURN_NULL } }.withRetries(); } public void delete(final List<Delete> deletes) throws IOException { Object[] results = new Object[deletes.size()]; try { connection.processBatch((List) deletes, tableName, pool, results); } catch (InterruptedException e) { throw new IOException(e); } finally { // mutate list so that it is empty for complete success, or contains only failed records // results are returned in the same order as the requests in list // walk the list backwards, so we can remove from list without impacting the indexes of earlier members for (int i = results.length - 1; i>=0; i--) { // if result is not null, it succeeded if (results[i] instanceof Result) { deletes.remove(i); } } } }
总体来说跟get差不多,这里就不再详细介绍了
后面的时序图中省略了HBaseClient部分(这个类主要是发送最终的请求,所以可以忽略)
从get的执行过程可以看到,有一个重试逻辑(默认10次),主要是region切分的时候下线等原因找不到出现的重试,对于scan,delete,put等操作都会有重试逻辑的,后面就省略这部分介绍了。
put的执行过程
这里实际上是已经假设put执行过程中调用了flushCommits()了,也就是写入后直接提交,如果不提交或者当前的缓存未满则不会有异步提交那些过程
首先初始化HTable的过程跟上面介绍的查询过程是一样的 这里有两个put函数 public void put(final Put put) throws IOException { doPut(put); if (autoFlush) { flushCommits(); } } public void put(final List<Put> puts) throws IOException { for (Put put : puts) { doPut(put); } if (autoFlush) { flushCommits(); } } doPut()首先将数据放到缓存中,当缓存满了之后再插入 private void doPut(Put put) throws IOException{ validatePut(put); writeBuffer.add(put); currentWriteBufferSize += put.heapSize(); if (currentWriteBufferSize > writeBufferSize) { flushCommits(); } } 最终会调用 HConnectionImplementation#processBatchCallback()它的核心逻辑如下 1.定位具体的Region,使用locateRegion()函数具体过程跟上面介绍的内容一样 这里会有一个重试,默认10次每次间隔1秒 2.将List<Put>或者Put放到线程池中 for (Entry<HRegionLocation, MultiAction<R>> e: actionsByServer.entrySet()) { futures.put(e.getKey(), pool.submit(createCallable(e.getKey(), e.getValue(), tableName))); } 3.遍历结果 for (Entry<HRegionLocation, Future<MultiResponse>> responsePerServer : futures.entrySet()) { HRegionLocation loc = responsePerServer.getKey(); Future<MultiResponse> future = responsePerServer.getValue(); MultiResponse resp = future.get(); } 4.处理异常信息及扫尾工作 线程池中的线程会调用HConnectionImplementation#createCallable() 最终发送一个RPC请求,将List<Put>或者Put中的内容发送给服务端 发送的RPC是一个封装的MultiAction,这个对象里面有包含了多个Action,每个Action就是对一个Put的 封装 最终会返回MultiResponse,这是对象里面包含了多个Pair(一个Pair就是对KeyValue的封装),如果是 Put操作则也会根据插入的数据返回相应的Pair,但是里面的KeyValue是空
scan的执行过程
执行过程如下
//假设客户端调用代码如下 HTable table = new HTable(cfg, "test"); ResultScanner rs = table.getScanner(scan); for(Result r : rs) { List<KeyValue> list = r.list(); for(KeyValue kv : list) { System.out.println(new String(kv.getRow())+"---"+new String(kv.getValue())) } } //table.getScanner()会先初始化scan,核心逻辑为 nextScanner() { 1.获取startKey和endKey 2.scan对象.set(startKey) 3.new ScannerCallable(scan对象,抓取数量) 4.ScannerCallable.withRetries() //发送RPC请求 } //再由ClientScanner调用ScannerCallable#call,ScannerCallable#call()的主要逻辑 //在scan之前需要先获得一个scan的ID,然后每次scan的时候都需要带上这个id //最终发送的RPC有两个参数,一个是scan的ID,第二个是抓取的数量 call() { if(scannerId!=-1L && closed) { close(); } else if(scannerID==-1L && !closed) { scannerId = openScanner(); } else { Result[] rss = WritableRpcEngine.next(scannerId,caching); } return rss; } //当执行到for(Result r : rs)时候会调用到 AbstractClientScanner#hasNext() { Result next = ClientScanner.next(); return Result; } //ClientScanner#next()核心逻辑 //当设置了抓取数量为2时候,执行RPC后服务端会返回两个Result,然后将这两个Result放到cache中 //当cache中没有数据时会再次向服务端发送RPC请求抓取数据 next() { if(cache.size() == 0) { ScannerCallable.setCaching(需要抓取的数量); Result[] values = ScannerCallable.withRetries(); for (Result rs : values) { cache.add(rs); } } if(cache.size() > 0) { return cache.poll(); } }
scan中如果出现了跨region的处理过程
上图是scan跨region时的一个时序图,其中关键的处理部分是ClientScanner#next()函数
countdown就是一次需要抓取的数量,比如一共抓取了5个,如果此时抓取了3个之后region就到头了,于是返回
在遍历的时候countdown就减减然后变成了2
do-while的while中有一个nextScanner(),前面两个都是判断条件,当没有出现跨regin访问时countdown都会变成0的,所以最后的nextScanner()就不会被触发了,而此时countdown是不为0的于是执行nextScanner()了
可以看到在nextScanner()中又会调用ServerCallable#connect()函数,获取一个远端的连接。而这个过程就是前面介绍的test表-->meta表-->root表的过程。
public Result next() { int countdown = this.caching; callable.setCaching(this.caching); do { // Server returns a null values if scanning is to stop. Else, // returns an empty array if scanning is to go on and we've just // exhausted current region. values = callable.withRetries(); if (values != null && values.length > 0) { for (Result rs : values) { cache.add(rs); for (KeyValue kv : rs.raw()) { remainingResultSize -= kv.heapSize(); } countdown--; this.lastResult = rs; } } // Values == null means server-side filter has determined we must STOP }while (remainingResultSize > 0 && countdown > 0 && nextScanner(countdown, values == null)); }
flush的过程
注意是 HTable#flushCommits,不是admin的flush
flush的过程实际上跟put,delete(批量删除)等很类似,相当于是做一次批量提交到远端
重点看一下processBatchCallback()函数
void processBatchCallback() { for (int tries = 0; tries < numRetries && retry; ++tries) { //1.第一步将所有的操作加入到MultiAction中 Map<HRegionLocation, MultiAction<R>> actionsByServer = new HashMap<HRegionLocation, MultiAction<R>>(); for (int i = 0; i < workingList.size(); i++) { Row row = workingList.get(i); if (row != null) { HRegionLocation loc = locateRegion(tableName, row.getRow()); byte[] regionName = loc.getRegionInfo().getRegionName(); MultiAction<R> actions = actionsByServer.get(loc); if (actions == null) { actions = new MultiAction<R>(); actionsByServer.put(loc, actions); } Action<R> action = new Action<R>(row, i); lastServers[i] = loc; actions.add(regionName, action); } } //2.提交到线程池中 Map<HRegionLocation, Future<MultiResponse>> futures = new HashMap<HRegionLocation, Future<MultiResponse>>(actionsByServer.size()); for (Entry<HRegionLocation, MultiAction<R>> e: actionsByServer.entrySet()) { futures.put(e.getKey(), pool.submit(createCallable(e.getKey(), e.getValue(), tableName))); } //3.获取结果 for (Entry<HRegionLocation, Future<MultiResponse>> responsePerServer : futures.entrySet()) { HRegionLocation loc = responsePerServer.getKey(); Future<MultiResponse> future = responsePerServer.getValue(); MultiResponse resp = future.get(); } } //4.处理异常 }
admin操作-flush
将指定的region或者全表中的所有region都刷新,从而强制将memstore中的数据写到HFile中
最终会调用HBaseClient#call()触发一个RPC请求,发送一个 flushRegion 调用
如果当前的表包含了10个region,则会触发10次 flushRegion调用
之后服务端接收到这个flushRegion请求后,将当前region中的数据刷新到HFile中
public void flush(final byte [] tableNameOrRegionName) { Pair<HRegionInfo, ServerName> regionServerPair = getRegion(tableNameOrRegionName, ct); if (regionServerPair != null) { flush(regionServerPair.getSecond(), regionServerPair.getFirst()); } else { final String tableName = tableNameString(tableNameOrRegionName, ct); List<Pair<HRegionInfo, ServerName>> pairs = MetaReader.getTableRegionsAndLocations(ct,tableName); for (Pair<HRegionInfo, ServerName> pair: pairs) { if (pair.getFirst().isOffline()) continue; if (pair.getSecond() == null) continue; flush(pair.getSecond(), pair.getFirst()); } } } private void flush(final ServerName sn, final HRegionInfo hri) { HRegionInterface rs = this.connection.getHRegionConnection( sn.getHostname(), sn.getPort()); rs.flushRegion(hri); }
参考
相关推荐
2. **RegionServer配置**:`hbase.regionserver.handler.count`指定了RegionServer上处理请求的工作线程数量,这直接影响到HBase的服务性能。`hbase.regionserver.maxlogs`则是RegionServer可持有的WAL日志的最大...
4. **Region服务器(Region Server)**:实际存储数据的节点,负责处理客户端的读写请求,维护Region。 5. **Zookeeper**:在CDH 5.3.6中,HBase依赖Zookeeper进行集群协调,例如管理Master选举、Region位置信息等...
这个文件包含了运行HBase所需的所有核心组件和工具,包括服务器端程序、客户端API、配置文件以及一些示例代码。解压这个压缩包后,我们可以看到以下主要组成部分: 1. **bin目录**:包含了启动、停止HBase服务的...
1. `HRegionServer`:负责处理客户端请求,管理一部分Region。 2. `Master`:HBase集群的主节点,负责Region的分配和平衡、监控RegionServer状态、处理表和Region的管理操作。 3. ZooKeeper:协调HBase集群,存储元...
Region Server是HBase的主要工作节点,负责处理客户端的请求,包括数据的读写。此版本通过优化内存管理和I/O调度,减少了Region Server的负载,从而提升了整体系统的吞吐量。此外,对表的分裂和合并操作也进行了优化...
6. 客户端API:研究HBase客户端如何通过Table、Get、Put、Scan等对象进行数据操作。 通过阅读源码,开发者可以更深入地理解HBase的工作原理,优化应用程序性能,解决遇到的问题,或者为HBase贡献新的功能和改进。...
- **RegionServer**:负责处理客户端请求,管理表的分区。 - **Master**:负责全局协调,如Region分配、RegionServer监控等。 - **Region分裂**:理解Region何时分裂以及如何分裂的过程。 - **WAL(Write-Ahead ...
主节点(Master)负责元数据管理、 Region分配以及故障恢复,而Region Server则负责实际的数据存储和服务请求。 2. **列式存储**:与传统的关系型数据库不同,HBase将数据按照列族(Column Family)存储,每个列族...
1. **HBase客户端API**:Java开发者可以通过这个API创建表、插入数据、查询数据以及管理HBase集群。它提供了如`Admin`接口用于管理表和区域,`Table`接口用于操作表,以及`Put`、`Get`、`Delete`和`Scan`对象用于...
由于Ranger的访问控制是在客户端发起请求时生效的,可能会增加一定的网络延迟。因此,在设置策略时,需要平衡安全性和性能,避免过度复杂的策略导致不必要的性能损耗。 总的来说,"ranger-2.1.0-hbase-plugin"是...
Phoenix服务器组件运行在HBase RegionServer上,负责处理来自客户端的请求,并直接与HBase交互。 2. **安装与配置** 解压"phoenix-hbase-2.2-5.1.3-bin.tar.gz"后,我们需要将其配置到HBase的类路径中。在HBase的...
- RegionServer:实际存储数据,处理客户端请求,负责Region的分裂和合并。 - Zookeeper:协调集群,存储元数据,保证高可用性。 - 表:由一个或多个Region组成,Region是存储的基本单位。 - Region:包含一个或...
通过水平扩展,它可以同时处理成千上万的客户端请求,确保系统的可伸缩性。 2. **列式存储**:与传统的行式存储不同,HBase以列族的形式存储数据。这种设计允许用户按需只读取所需列,极大地提高了查询效率,尤其...
1. Region Server:负责存储和管理Region,处理客户端请求。 2. Master Server:负责Region的分配、Region Server的监控、元数据的管理等。 3. Zookeeper:协调HBase集群,存储元数据信息,确保系统的高可用性。 4. ...
`org.apache.hadoop.hbase.client.HConnectionManager`负责管理客户端与HBase服务器之间的连接,而`org.apache.hadoop.hbase.regionserver.HRegionServer`是处理Region服务的主要组件,它负责处理来自客户端的请求并...
- **Get和Put操作**:客户端通过HTable接口的get和put方法与HBase交互,发送请求到RegionServer。 - **Scanning**:用于批量获取数据,支持过滤器,优化数据检索效率。 - **Compaction**:定期合并region中的...
1. **Region Server**:Region Server是HBase的主要工作节点,负责存储和处理客户端的请求,包含多个Region。 2. **Region**:Region是HBase的数据分区单元,每个Region由一个起始键和结束键定义,Region会随着数据...
HPI读取tcpdump文件或捕获网络接口的实时数据包流,以提取有关客户端请求和响应的信息。 您可以对其进行配置,以将获得的信息加载到其内存数据库中,该数据库可以通过命令行和基于WebSQL界面进行访问,也可以加载到...
5. Region服务器:RegionServer是HBase的数据节点,负责处理客户端请求,管理表的分区。 6. ZooKeeper:HBase依赖ZooKeeper进行元数据的协调和服务发现,确保集群的稳定运行。 Hadoop 2.x的集成意味着HBase可以利用...
8. 客户端API:HBase提供了Java API,同时也支持多种其他语言的客户端,如Python、Ruby和PHP,方便各种应用的开发。 9. 可伸缩性:HBase的设计目标是水平扩展,能够轻松处理PB级别的数据。通过增加Region Server的...