`

HBase-服务端处理请求的过程

 
阅读更多

 

Region的架构



 

 

HRegionServer:

配置:

hbase.client.retries.number (默认10)  客户端的重试次数

hbase.regionserver.msginterval (默认3*1000) ???

hbase.regionserver.checksum.verify(默认false) 是否启用checksum

hbase.server.thread.wakefrequency(默认10*1000) 线程检查频率

hbase.regionserver.numregionstoreport(默认10) ???

hbase.regionserver.handler.count(默认10) handler处理线程个数

hbase.regionserver.metahandler.count(默认10) 处理meta和root的线程个数

hbase.rpc.verbose(默认false)

hbase.regionserver.nbreservationblocks(默认4)

hbase.regionserver.compactionChecker.majorCompactPriority(默认Integer.MAX_VALUE)

 

HRegionServer的主要操作:

包含的类有

HRegion集合

Leases(租借时间检查)

HMasterRegionInterface(管理hbase)

HServerLoad(hbase负载)

CompactSplitThread(用于合并处理)

MemStoreFlusher(用于刷新memstore)

HLog(WAL相关)

LogRoller(日志回滚)

ZooKeeperWatcher(zk监听)

SplitLogWorker(用于切分日志)

ExecutorService(用户启动open,close HRegion的线程池)

ReplicationSourceService和ReplicationSinkService(replication相关)

HealthCheckChore(健康检查)

 

一些监听类

MasterAddressTracker

CatalogTracker

ClusterStatusTracker

 

一些函数

postOpenDeployTasks() 此函数用于更新root表或meta表

各种CURD,scanner,increment操作

multi操作(对于delete和put)

对HRegion的flush,close,open(提交到线程池去做)

split,compact操作,这些最终由一个具体的HRegion去完成

 

启动的线程

hbase.regionserver.executor.openregion.threads 3

hbase.regionserver.executor.openroot.threads 1

hbase.regionserver.executor.openmeta.threads 1

hbase.regionserver.executor.closeregion.threads 3

hbase.regionserver.executor.closeroot.threads 1

hbase.regionserver.executor.closemeta.threads 1

hlog roller

cache flusher

compact

health check

lease

WEB UI

replication

rpc server

split worker

 

 

HRegion

配置:

 

 

HRegion的主要操作:

1.CURD和increment操作

2.doMiniBatchMutation操作(用于delete和put)

3.对region的open,delete,init,close,以及addRegionToMeta等操作

4.snapshot

5.bulkload

6.split

7.compact(major,minor)

8.lock

包含的内部类

WriteState(在flush,close,compact时会根据这个类加锁)

RegionScannerImpl(scan的region级别操作)

 

 

 

 

 

coprocessor的处理原理

//HRegion的构造函数
coprocessorHost = new RegionCoprocessorHost(this, rsServices, conf);

//RegionCoprocessorHost类中  将自定义的coprocessor类加载进来,并放到集合中
protected SortedSet<E> coprocessors = new SortedCopyOnWriteSet<E>(new EnvironmentPriorityComparator());
public RegionCoprocessorHost类中() {
 	// load system default cp's from configuration.
	loadSystemCoprocessors(conf,"hbase.coprocessor.region.classes");
	
	// load system default cp's for user tables from configuration.
    if (!HTableDescriptor.isMetaTable(region.getRegionInfo().getTableName())) {
		loadSystemCoprocessors(conf,"hbase.coprocessor.user.region.classes");		
    }
    
	// load Coprocessor From HDFS
    loadTableCoprocessors(conf);
}

public void load相关函数() {
	//1.从当前线程上下文classloader中找到类并加载
	//2.放到coporcessors集合中
}

//coprocessor的执行过程
//coprocessorHost.preFlush()时候会遍历执行所有集合中的处理器
HRegion#flush() {
	//1.coprocessorHost.preFlush();
	//2.flush
	//3.coprocessorHost.postFlush();
}

 

 

 

 

 

服务端接收处理过程

 

HBaseServer$Listener的run()函数和doAccept()函数简化如下  这是一个独立的listene线程

while (running) {
	SelectionKey key = null;
	selector.select(); // FindBugs IS2_INCONSISTENT_SYNC
	Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
	while (iter.hasNext()) {
		key = iter.next();
		iter.remove();
		if (key.isValid()) {
	    	if (key.isAcceptable())
	      		doAccept(key);
  			}
		}
	}
}

void doAccept(SelectionKey key) {
	ServerSocketChannel server = (ServerSocketChannel) key.channel();
	currentReader = (currentReader + 1) % readers.length;
	Reader reader = readers[currentReader];
	readSelector.wakeup();
	SelectionKey readKey = reader.registerChannel(channel);
    c = getConnection(channel, System.currentTimeMillis());
    readKey.attach(c);
}

 

HBaseServer$Listener$Reader的run()函数简化如下   这是一个独立的select线程

while (running) {
	SelectionKey key = null;
	readSelector.select();
	while (adding) {
		this.wait(1000);
	}	
	Iterator<SelectionKey> iter = readSelector.selectedKeys().iterator();
	while (iter.hasNext()) {
		key = iter.next();
		iter.remove();
		if (key.isValid()) {
			if (key.isReadable()) {
				doRead(key);
			}
		}
	}
}

//doRead()主要是读取远端的数据并解析处理
//没有这个process()函数,只是将逻辑简化了一下展示而言
//解析id,param并封装成一个Call对象,插入到并发队列中,之后由Handler线程处理
void process() {
	int id = dis.readInt(); 
	param = ReflectionUtils.newInstance(paramClass, conf);//read param
	param.readFields(dis);
	Call call = new Call(id, param, this, responder, callSize);
	        
	if (priorityCallQueue != null && getQosLevel(param) > highPriorityLevel) {
		priorityCallQueue.put(call);
	} else if (replicationQueue != null && getQosLevel(param) == HConstants.REPLICATION_QOS) {
		replicationQueue.put(call);
	} else {
		callQueue.put(call); // queue the call; maybe blocked here
	}
}

 

HBaserServer$Handler的run()函数简化如下

public void run() {
	//这里的myCallQueue和callQueue是一个队列
	Call call = myCallQueue.take();
	Invocation call = (Invocation)param;
	Method method = protocol.getMethod(call.getMethodName(),
		call.getParameterClasses());
		Object[] params = call.getParameters();
	Object value = method.invoke(impl, params);
	
	//最后会调用到HBaserServer自身的某个函数
        //onlineRegions 是ConcurrentHashMap<String, HRegion>()
        String name = HRegionInfo.encodeRegionName(regionName)
        onlineRegions.get(name);
	Result r = region.getClosestRowBefore(row, family);
	return r;
}

 

 

 

 

 

flush的过程

服务端是收到了客户端发来的flushRegion请求,具体过程参见 客户端请求过程一文

客户端如果是flush全表,先是获取这个表的所有region名字,然后做一次批量的flushRegion请求(多个请求),但是所有的请求都是在一个线程中执行的

和flush相关的类函数简化如下,1-4是调用顺序

1.HRegion#flushcache()

2.HRegion#internalFlushcache()

3.Store#internalFlushCache()

4.StoreFile$Writer#append()

//刷新region中的数据,注意有一个读锁
HRegion#flushcache() {
	try {
		lock.readLock().lock();
		internalFlushcache(status);
	} finally {
		lock.readLock().unlock();
	}
}

//这里是遍历获取region中的所有store,然后对每个store都创建一个
//StoreFlusher对象,使用这个对象来刷新数据
//注意在获取所有Store的时候使用了写锁
HRegion#internalFlushcache() {
	try {
		this.updatesLock.writeLock().lock();
		List<StoreFlusher> storeFlushers = new ArrayList<StoreFlusher>(stores.size());
		for (Store s : stores.values()) {
			storeFlushers.add(s.getStoreFlusher(completeSequenceId));
	    }	
	} finally {
		this.updatesLock.writeLock().unlock();
	}
	for (StoreFlusher flusher : storeFlushers) {
		flusher.flushCache(status);
	}
}

//将memstore中的数据取出然后遍历所有的KV
//将其刷新到HFile中,注意刷新的时候有一个flush锁
Store#internalFlushCache() {
	InternalScanner scanner = null;
    KeyValueScanner memstoreScanner = new CollectionBackedScanner(set, this.comparator);	
	
  	Scan scan = new Scan();
	scan.setMaxVersions(scanInfo.getMaxVersions());
	scanner = new StoreScanner(this, scanInfo, scan,
		Collections.singletonList(memstoreScanner), ScanType.MINOR_COMPACT,
		this.region.getSmallestReadPoint(), HConstants.OLDEST_TIMESTAMP);

	try {
		flushLock.lock();
		StoreFile.Writer writer = createWriterInTmp(set.size());
		List<KeyValue> kvs = new ArrayList<KeyValue>();
		boolean hasMore;
		do {
			hasMore = scanner.next(kvs, compactionKVMax);
			for (KeyValue kv : kvs) {
				Writer.append(kv);
				flushed += this.memstore.heapSizeChange(kv, true);		
			}
			kvs.clear();
		}while(hasMore);	
	} finally {
		flushLock.unlock();
	}
}

//如果配置了布隆过滤器这里也会创建,最后调用
//HFileWriterV2将数据写入
StoreFile$Writer#append(final KeyValue kv) {
	appendGeneralBloomfilter(kv);
	appendDeleteFamilyBloomFilter(kv);
	HFileWriterV2#append(kv);
	trackTimestamps(kv);
}

  

 

 

 

 

单个多个put和多个delete的过程

最终是将KeyValue存到KeyValueSkipListSet中,这个类内部是采用ConcurrentSkipListMap实现的

服务端是接收到客户端发来的multi请求

注意只有put操作(单个put和批量put操作)以及批量的delete操作才会执行上面的调用逻辑

incr和单个delete采用了不同的处理逻辑

简化的核心处理函数如下:

//对put和delete操作,都会进到这个函数里面
HRegion#doMiniBatchMutation() {
	//1.试着获取锁
	//2.更新时间戳
	lock(this.updatesLock.readLock(), numReadyToWrite);
	
	//3.写入到memstore中	
	long addedSize = 0;
	for (int i = firstIndex; i < lastIndexExclusive; i++) {
		addedSize += applyFamilyMapToMemstore(familyMaps[i], w);	
	}
	
	//4.写入到WALEdit中
	addFamilyMapToWALEdit(familyMaps[i], walEdit);
	
	//5.写入到HLog中(不做sync)
	HLog.appendNoSync(regionInfo, this.htableDescriptor.getName(),
		walEdit, first.getClusterId(), now, this.htableDescriptor);
		
	//6.释放锁
	this.updatesLock.readLock().unlock();
	//7.同步WALEdit
	//8.mvcc相关
	mvcc.completeMemstoreInsert(w);	
	//9.执行coprocessor hook
}

这里没有memstore满了判断逻辑,而是由单独的一个线程(cacheFlusher)出处理的

写入到memstore的判断逻辑图


 

 

 

 

 

incr的过程

核心处理逻辑如下

HRegion#increment() {
    Map<Store, List<KeyValue>> tempMemstore = new HashMap<Store, List<KeyValue>>();
    try {
	    Integer lid = getLock(lockid, row, true);
	    lock(this.updatesLock.readLock());      
		byte [] row = increment.getRow();
		Get get = new Get(row);
		List<KeyValue> results = get(get, false);
		for(KeyValue kv : results) {
			KeyValue kv = results.get();
			if(kv.getValueLength() == Bytes.SIZEOF_LONG) {
				amount += Bytes.toLong(kv.getBuffer(), kv.getValueOffset(), Bytes.SIZEOF_LONG);
			} else {
				throw new DoNotRetryIOException("Attempted to increment field that isn't 64 bits wide");
			}
		}
	
		if (writeToWAL) {
			walEdits.add(newKV);
		}
		tempMemstore.put(store, kvs);
		//将WALEdit sync到HLog中
	
		size = this.addAndGetGlobalMemstoreSize(size);
		flush = isFlushSize(size);
	    if (flush) {
			requestFlush();
	    }
    } finally {    
		this.updatesLock.readLock().unlock();
        releaseRowLock(lid);
    }
}

可以看到incrment的执行流程是先根据row创建Get对象,然后获取这个值,再对这个值做++操作

并将结果放到临时缓存中,如果缓存已满就做刷新

从获取数据到,再做++操作,最后写入缓存(可能还要做刷新处理)这么一段过程都是需要加锁处理的,加锁只是一个行锁

 

 

 

 

 

单个delete的过程

主要处理简化逻辑如下

HRegion#delete(){
	try {
		lid = getLock(lockid, row, true);
		internalDelete()
	} finally {
		releaseRowLock(lid);
	}
}

HRegion#internalDelete() {
	try {
		updatesLock.readLock().lock();
		//将KeyValue写入到WALEdit中
		for(family : 获取delete关联的所有famliy) {
			Store store = getStore(family);
        	for (KeyValue kv: edits) {
          		kv.setMemstoreTS(localizedWriteEntry.getWriteNumber());
          		addedSize += store.add(kv);
        	}
		}
		flush = isFlushSize(this.addAndGetGlobalMemstoreSize(addedSize));
		if (flush) {
      		requestFlush();
    	}
	} finally {
		updatesLock.readLock().unlock();
	}	
}

delete是将所有的column famliy都遍历一遍然后删除和这个key相关的所有famliy,并写入缓存中,如果缓存满了就做刷新处理,同时在删除的时候会有更新锁。

 

 

 

 

 

get的过程

下面是核心处理逻辑,可以看到get最后是通过scan来处理的,也就是简单的将scan包装了一下

HRegion#get() {
	List<KeyValue> results = new ArrayList<KeyValue>();
	Scan scan = new Scan(get);
	RegionScanner scanner = getScanner(scan);
	List<KeyValue> list = scanner.next(results, SchemaMetrics.METRIC_GETSIZE);
	return Result(list);
}

 

 

 

 

 

scan过程

scan是最复杂的操作,其中包含了getClosestRowBefore,openScanner,next三个操作

第一个是对用于对META和ROOT表操作的,第二个用于创建一个scan对象,第三个用于做遍历操作

首先看第一个closestRowBefore的时序图


这里简单来说有这么几步操作

1.通过Store调用HFileReaderV2,这里主要用于打开一个HFile文件,然后定位到指定的key前面或者后面。 

   这步操作是用于在ROOT表中获取特定的KeyValue,info:server这个KeyValue,然后将这个值封装成

   Get对象再去查询META表

2.调用get函数对数据进行获取,get内部又是调用scan函数的,所以实际会创建一个StroeScanner对象

3.StoreScanner也就是对底层的HFileScanner的简单封装

4.之后调用next()获取一段数据,这里还会有嵌入了filter的执行逻辑

5.最后返回给用户的是Result结果,这里就是META表中的一条记录

 

getClosestRowBefore的调用栈如下


 

scan操作的类图如下


Store是核心的类,这个类中包含了若干个StoreFile,每个StoreFile类中又有一个Reader和Writer内部类。

通过Reader内部类可以返回一个StroeFileScanner对象

而最终上层在做scan的时候,是通过RegionScannerImpl去做的,这里就包含了filter的过滤逻辑。

执行逻辑如下

//定位到一个具体的Store后,然后在这个Sotre中查找最接近指定key的KeyValue
//再根据这个KeyValue做一次get查询
//简单来说就是根据特定的key直接从HFile中查找最接近的KeyValue
//然后封装成Get操作,从META表中查询出List<KeyValue>并返回
HRegion#getClosestRowBefore() {
	startRegionOperation();
	Store store = getStore(family);
	KeyValue key = store.getRowKeyAtOrBefore(row);
	if (key != null) {
		Get get = new Get(key.getRow());
        get.addFamily(family);
        result = get(get, null);
	}
}


//先从memstore中查找最匹配的key,然后再遍历当前Store下的所有的HFile
//找到最匹配的那个key
//比如客户端发起查询.META.,test,,99999999999999,99999999999999
//实际找到key为(返回info:server那个KeyValue)
//.META.,,1/info:server/1423222815731/Put/vlen=23/ts=0
Store#getRowKeyAtOrBefore() {
	this.memstore.getRowKeyAtOrBefore(state);
	for (StoreFile sf : Lists.reverse(storefiles)) {
		rowAtOrBeforeFromStoreFile(sf, state);
	}
}

//这里是定位到-ROOT-表中的info:server 这一个KeyValue并返回
Store#rowAtOrBeforeFromStoreFile() {
	 HFileScanner scanner = r.getScanner(true, true, false);
	 if (!seekToScanner(scanner, firstOnRow, firstKV)) return;
	 if (walkForwardInSingleRow(scanner, firstOnRow, state)) return;
	 while (scanner.seekBefore(firstOnRow.getBuffer(), firstOnRow.getKeyOffset(),firstOnRow.getKeyLength())) {
     	KeyValue kv = scanner.getKeyValue();
      	if (!state.isTargetTable(kv)) break;
      	if (!state.isBetterCandidate(kv)) break;
      	// Make new first on row.
      	firstOnRow = new KeyValue(kv.getRow(), HConstants.LATEST_TIMESTAMP);
      	// Seek scanner.  If can't seek it, break.
      	if (!seekToScanner(scanner, firstOnRow, firstKV)) break;
      	// If we find something, break;
      	if (walkForwardInSingleRow(scanner, firstOnRow, state)) break;
    }
}


//先是在缓存中查找,如果找到就返回
//否则就在HFile中查找,找到后再放到缓存中
//这里读取的是一个data block
HFileReaderV2#readBlock() {
	BlockCacheKey cacheKey = new BlockCacheKey(name, dataBlockOffset,
	dataBlockEncoder.getEffectiveEncodingInCache(isCompaction),
	expectedBlockType);
            
	HFileBlock cachedBlock = (HFileBlock)cacheConf.getBlockCache().
	getBlock(cacheKey, cacheBlock, useLock);
	if (cachedBlock != null) {
		return cachedBlock;
	}                      
	HFileBlock hfileBlock = fsBlockReader.readBlockData(dataBlockOffset,onDiskBlockSize, -1, pread);
	cacheConf.getBlockCache().cacheBlock(cacheKey, hfileBlock,cacheConf.isInMemory());                
}


//执行到这里的时候已经获取到key在META表中的接近key了
//然后在执行get操作根据META表的key再从META表中获取一条数据返回
//nextRaw最后会调用nextInternal做处理
HRegion$RegionScannerImpl#nextRaw() {
if (outResults.isEmpty()) {
        // Usually outResults is empty. This is true when next is called
        // to handle scan or get operation.
        returnResult = nextInternal(outResults, limit, metric);
      } else {
        List<KeyValue> tmpList = new ArrayList<KeyValue>();
        returnResult = nextInternal(tmpList, limit, metric);
        outResults.addAll(tmpList);
      }		
}


//这个函数通过KeyValueHeap获取一条KeyValue
//KeyValueHeap是调用StoreScanner#next()
//而StoreScanner最终会调用HFileReaderv2$ScannerV2#next()
//获取一条KeyValue,最后返回一个List<KeyValue>,也就是Result
//返回结果为
//[.META.,,1/info:regioninfo/1423222781931/Put/vlen=34/ts=0, 
//.META.,,1/info:server/1423222815731/Put/vlen=23/ts=0, 
//.META.,,1/info:serverstartcode/1423222815731/Put/vlen=8/ts=0, 
//.META.,,1/info:v/1423222781931/Put/vlen=2/ts=0]
HRegion$RegionScannerImpl#nextInternal() {
	// Let's see what we have in the storeHeap.
	KeyValue current = this.storeHeap.peek();	
	//之后再做一些filter操作,判断是否需要终止后续逻辑
}

 

openscanner的执行过程 


执行逻辑如下

//这里的逻辑是创建一个RegionScanner对象,这个对象内部是封装了RegionScannerImpl
//最终是调用HFileReaderV2定位到一个具体的data block附近,然后将这个scann对象缓存起来
//并创建一个scannID,将id和scan对象放到map中,并将scannID返回给用户
//之后用户就根据这个scanID去做scan操作
HRegionServer#openScanner() {
	HRegion r = getRegion(regionName);
	RegionScanner s = r.getScanner(scan);	
	return addScanner(s);
}


//创建RegionScannerImpl待以后使用
HRegion#instantiateRegionScanner() {
	//返回类型为RegionScanner
	return new RegionScannerImpl(scan, additionalScanners, this);	
}


//RegionScannerImpl的构造函数
//此时会创建一个StoreScanner对象
//并调用StoreFileScanner#seek()
RegionScannerImpl#init() {
	 for (Map.Entry<byte[], NavigableSet<byte[]>> entry :scan.getFamilyMap().entrySet()) {
        Store store = stores.get(entry.getKey());
        //这里会创建一个StoreScanner对象
        KeyValueScanner scanner = store.getScanner(scan, entry.getValue());	
     	scanners.add(scanner);   
    }
}


StoreFileScanner#seek() {
	//1.定位到指定的key附近
	seekAtOrAfter()
}


//生成一个scannID,放到map中(map的key是scannID,value是RegionScannerImpl)
//最后再创建一个租借时间的监听器
HRegionServer#addScanner() {
    scannerId = rand.nextLong();
    String scannerName = String.valueOf(scannerId);
    scanners.put(scannerName, s);
    this.leases.createLease(scannerName, new ScannerListener(scannerName));	
}

 

next的执行过程

执行逻辑如下

//首先根据scannID获取scan对象
//然后使用这个scan对象获取数据
//最后返回Result[] 数组给客户端
HRegionServer#next() {
	RegionScanner s = this.scanners.get(scannID);
	this.leases.cancelLease(scannID);
	HRegion region = getRegion(s.getRegionInfo().getRegionName());	
	List<Result> results = new ArrayList<Result>(nbRows);
	boolean moreRows = s.nextRaw(values, SchemaMetrics.METRIC_NEXTSIZE);
	results.add(new Result(values));
	this.leases.addLease(lease);
	//最终返回Result[] 数组	
}


//使用RegionScannerImpl这个内部类来抓取数据
HRegion$RegionScannerImpl#nextRaw() {
	if (outResults.isEmpty()) {
		// Usually outResults is empty. This is true when next is called
		// to handle scan or get operation.
		returnResult = nextInternal(outResults, limit, metric);
	} else {
		List<KeyValue> tmpList = new ArrayList<KeyValue>();
		returnResult = nextInternal(tmpList, limit, metric);
		outResults.addAll(tmpList);
	}
}


//populateResult函数中调用KeyValueHeap#next()获取一条KeyValue
HRegion$RegionScannerImpl#nextInternal() {
	boolean stopRow = isStopRow(currentRow, offset, length);	
	KeyValue nextKv = populateResult(results, this.storeHeap, limit, currentRow, offset,
	length, metric);
	//一系列的filter,过滤一些东西,看是否需要结束
}


//批量抓取一些KeyValue
KeyValueHeap#next() {
	InternalScanner currentAsInternal = (InternalScanner)this.current;
    boolean mayContainMoreRows = currentAsInternal.next(result, limit, metric);
    KeyValue pee = this.current.peek();
	
}


//这里有很复杂的switch判断,主要给filter使用的
//根据不同的情况可能会出现重现定位reseek()
StoreScanner#next() {
	switch(code) {
		case SEEK_NEXT_ROW: {
			reseek(matcher.getKeyForNextRow(kv)); break;
		}
		case SEEK_NEXT_COL: {
			reseek(matcher.getKeyForNextColumn(kv)); break;	
		}
		case SKIP: {
			KeyValueHeap.next();	
		}
		//......
	}	
}


//调用HFileReaderV2定位具体的data block
StoreFileScanner#reseek() {
 	if (!reseekAtOrAfter(hfs, key)) {
		close();
        return false;
	}
	cur = HFileReaderV2$ScannerV2.getKeyValue();
}

  

 

 

  • 大小: 51 KB
  • 大小: 52.7 KB
  • 大小: 43.4 KB
  • 大小: 46.3 KB
  • 大小: 30.8 KB
  • 大小: 121.1 KB
  • 大小: 69.3 KB
  • 大小: 84.3 KB
  • 大小: 77.4 KB
  • 大小: 81 KB
分享到:
评论

相关推荐

    hbase- java开发连接工具类

    3. **RPC机制**:HBase使用远程过程调用(RPC)与RegionServer进行通信,处理数据请求。这个JAR包包含了相关的RPC实现。 4. **行键(RowKey)索引**:HBase是一种列族式数据库,行键是其主要的索引方式。`hbase-...

    phillycrime-springboot-phoenix:Apache Phoenix-Apache HBase-SpringBoot-Philly犯罪数据

    【标题】"phillycrime-springboot-phoenix"是一个项目,它将Apache Phoenix、Apache HBase与SpringBoot框架集成,用于处理和分析费城(Philly)的犯罪数据。这个项目旨在提供一个高效的数据查询和分析平台,利用了...

    HBase源码分析

    另外,HBase还需要处理在数据传输过程中可能出现的异常情况,比如网络中断、服务端故障等。HBase的RPC框架需要有一套完整的出错处理和重试机制,保证通信的健壮性。 HBase为了实现以上提到的RPC通信机制,提供了...

    kerberos环境搭建

    用户首先向KDC请求TGT,然后使用TGT请求服务票证(Service Ticket),这个服务票证允许用户访问特定的服务。整个过程都是加密的,保证了安全性。 2. **系统准备**: 在搭建Kerberos环境前,你需要一个运行Linux的...

    hbase_coprocessor_hbase_coprocessorjava_源码

    5. `HBaseProtos.CoprocessorServiceRequest`和`HBaseProtos.CoprocessorServiceResponse`:用于在客户端和服务端之间传递服务请求和响应。 6. `HTableInterface`和`RegionServerServices`接口:Coprocessor可以...

    hbase性能调优

    针对HBase的服务端性能调优,可以通过合理调整一系列关键参数来提升系统的稳定性和效率。下面将详细介绍几个核心参数及其调优方法。 ##### 1. `hbase.regionserver.handler.count` - **含义**:该参数决定了...

    中国HBase技术社区第4届-MeetUp-上海站_携程HBase实践.pptx

    - 监控指标涵盖连接数、响应时间、处理时间、读写请求数、请求大小、运行线程数、flush和compaction队列长度、Blockcache命中率、Hlog文件大小和数量、Storefile数量和大小等。 - 通过模拟用户行为检测异常,比如...

    HBase 实战

    此外,书中还会介绍如何使用HBase的协处理器(Coprocessors),它们允许将业务逻辑部署到服务端,从而在数据访问点进行定制处理,提高处理效率。 HBase的客户端API也是进阶主题的一部分,特别是除了标准的Java API...

    HBaseCoprocessor的实现与应用.pdf

    2. **执行操作**:服务端接收到请求后,由 Endpoint 处理并执行相应操作。 3. **返回结果**:处理完成后,Endpoint 将结果返回给客户端。 #### 四、Observer实现二级索引 除了 Endpoint,还可以使用 Observer 接口...

    C#使用Thrift2操作HBase数据库

    Thrift的编译器会生成客户端和服务端的代码,使得在C#中调用HBase服务变得简单。 接下来,为了在C#中使用Thrift2连接到HBase,你需要完成以下步骤: 1. **安装Thrift**: 首先,你需要在开发环境中安装Thrift工具,...

    HbaseJavaWeb实例

    其中,Servlet是Java编写的服务端程序,用于处理客户端的请求;JSP则是一种动态网页技术,允许在HTML中嵌入Java代码,方便生成动态内容。 3. **JSP(JavaServer Pages)**: JSP是Java Web的重要组成部分,它允许...

    某大数据公司内部Hbase性能测试详细设计文档及用例

    通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。...

    hbase:实验一-Hive3安装与部署.pdf

    - **配置并运行HiveServer2**:HiveServer2是Hive的服务端,负责接收客户端的查询请求并执行。你需要下载Hive,设置Hive能找到Hadoop的路径,创建仓库目录,并启动HiveServer2。 - **通过Beeline连接HiveServer2**:...

    hbase过滤器简单教程

    过滤器可以根据列族、列、版本等更多的条件来对数据进行过滤,基于 HBase 本身提供的三维有序(行键,列,版本有序),这些过滤器可以高效地完成查询过滤的任务,带有过滤器条件的 RPC 查询请求会把过滤器分发到各个...

    HBase在大搜车金融业务中的应用实践

    同时,利用WebSocket技术,可以实现客户端与服务端的实时通信,显著降低建立HTTP请求的耗时,这在金融业务中的数据大屏实时显示中尤为重要。 在GPS风控实践中,HBase被用作海量GPS数据的存储和分析平台,主要通过...

    基于springboot+netty+mybatis+hbase+kafka实现的socket server+源代码+文档说明

    - [ ] socket server接收到返回的数据后,分别写入到hbase数据库和kafka队列中 - [ ] 最后调用websocket server,往所有跟它建立的客户端发送接收到的数据 ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能...

    thrift-0.13.0.zip

    3. **服务端实现**:在HBase中,服务端通常是由HBase自身提供的,它实现了Thrift IDL中定义的服务接口,处理客户端的请求。 4. **客户端调用**:在Go中,你可以使用生成的代码来创建客户端,实例化服务代理,然后...

    行业分类-设备装置-基于透明服务平台数据访问的服务端及其缓存优化方法.zip

    其次,服务端是整个系统的核心,它负责接收客户端请求,处理业务逻辑,并返回响应。设计良好的服务端架构可以提高系统的可扩展性和性能。常见的服务端架构有单体架构、微服务架构和Serverless架构。在本主题中,可能...

Global site tag (gtag.js) - Google Analytics