6.5AVERAGES
Given n numbersy1…,yn,their
average value is defined as
_____________________
Ifall they1arereplaced
by the average valueyave,the sum will be unchanged,
y1+…
+ yn=yave+…
+yave=n
yave.
Iffiscontinuous
function on a closed interval [a, b], what is meant by the average value off
betweenaandb(Figure6.5.1)?
Let us try to imitate the procedure for finding the averageofn
numbers.Take an infinite hyperreal numberHanddivide the
interval [a ,b]into infinitesimal subintervals of length
dx=(b-a)/H.Let
Figure6.5.1
Us“sample”thevalue
of f attheH
pointsa, a+dx, a+2dx,…,a+
(H-1)dx.
Thenthe average value offshouldbe
infinitely close to the sum of the values offata,a+ dx, ……,a+
(H-1)dx,divided byH.Thus
Sincedx=_________,
______________andwe have
fave≈__________________.
________________.
Takingstandard parts, we are led to
DEFINITION
Letf be continuous on [a, b]. The average value of f between a and b is
fave= ______________
Geometrically,the area under the curvey=f(x)isequal
to the area under the constant curvey=favebetweenaanb,
fave·(b-a)=
_____ f(x)dx.
EXAMPLE1Findthe
average value ofy=___fromx=1tox=4(
Figure 6.5.2).
Figure6.5.2
Recallthat in Section 3.8, we defined the average slope of a functionFbetweenaandbasthe
quotient
averageslope=________________
Usingthe Fundamental Theorem of Calculus we can find the connectionbetween
the average value of F'andthe average slope ofF.
THEOREM1
LetF be an antiderivative of a continuous function f on an open intervalI.
Thenfor any a < b in I , the average slope of F between a and b isequal to the average value of f between a and b,
___________________________.
PROOFBy the Fundamental Theorem,
F(b)-F(a) =_____
f (x) dx.
THEOREM2 (Mean Value Theorem for Integrals)
Letf be continuous on [ a, b]. Then there is a point c strictly betweena and b
where the value of f is equal to its average value,
PROOFTheorem 2 is illustrated in Figure 6.5.3. We can make f continuous
on
thewholereal line
by defining f(x) = f(a) forx <aandf(x)=f(b)forx
> b.
BytheSecond Fundamental
Theorem of Calculus , fhasan antiderivativeF.
Bythe Mean Value Theorem there is a pointcstrictlybetweena
andbat
whichF'(c)isequal
to the average slope ofF,
_____________________
ButF(c) = f(c)andF(b)
- F(a)=______dx,so
f(c)=____________
Figure6.5.3
EXAMPLE2
Acarstats at rest
and moves with velocity v= 3t².Find its average
velocitybetweentimest=0andt=5.At
what point of time is its velocity
equaltothe average velocity?
__________________________=25
Tofind the value oftwherev=vave,
we put
3t²=25,t=_________=5/_________.
Supposea car drives from cityAtocityB
andback, a distance of 120 miles each way. FromAtoBittravels
at a speed of 30 mph, and on the return trip it travels at 60mph. What is the average speed?
Ifwe choose distance as the independent variable we get one answer, andif we choose time we get another.
Averagespeed with respect to time : the car takes 120/ 30 = 4 hours
to gofrom A toBand
120/60=2 hours to return toA.The
total trip takes 6 hours.
_________________________
Averagespeed with respect to distance : The car goes 120 miles at 30 mph and120 miles at 60 mph, with a total
distance of 240 miles. Therefore
___________________
In general, ify is given both as a function of s and of
t, y=f(s) = g(t), then there is one average ofy with respectto
s, and another with respect to t.
EXAMPLE3 A car travels with velocityv= 4t + 10, where
t istime. Between times t = 0 andt=4 find the averagevelocity with respect to (a) time, and (b) distance.
________________________________(Figure 6.5.5(a)).
Figure6.5.5
(b)lets be the distance, and puts
= 0 when t =0.Since ds =vdt = (4t+10)dt,
attimet = 4 we have
_______________________
Then_____________________________
PROBLEMSFOR SECTION 6.5
InProblems 1-8, sketch the curve, find the average value of thefunction, and sketch the rectangle which has the same area as theregion
under the curve.
1f(x) = 1 +x, -1≤
x ≤12 f(x) = 2 - _____x, 0 ≤
x ≤ 4
3f(x) = 4 -x², -2 ≤
x ≤24 f(x) = 1 + x²,-2 ≤x
≤ 2
5f(x) = _____, 1 ≤x≤ 56
f(x) = x3, 0 ≤ x ≤2
7f(x) = ______, 0 ≤x≤ 88
f(x) = 1 - x4, -1 ≤ x≤ 1
InProblems 9-22, find the average value off(x).
9f(x) =x² -
______,0 ≤ x
≤ 310 f(x) = _____ +______, 1 ≤x
≤ 9
11f(x) = 6x, - 4 ≤x
≤212 f(x) = ________,___ ≤
x ≤ ____
13f(x)=_______,-
3 ≤ x ≤314 f(x) = 5x4 - 8x3 + 10, 0 ≤x
≤10
15f(x) =sinx,0
≤ x ≤ π16 f(x)=sinx,0 ≤x
≤ 2π
17f(x) =sinxcosx,0
≤ x ≤ π/218 f(x)=x +sinx,0
≤x ≤ 2π
19f(x) =ex,
-1≤ x ≤ 120 f(x)=e x- 2x,0
≤ x ≤ 2
21f(x)=___,1
≤ x ≤ 422 f(x) =_____,0≤x≤4
InProblems 23-28, find a pointc in the given interval such thatf(c) is equal to the average value off(x).
23f(x)=2x,-4
≤ x ≤ 6 24f(x)=3x²,0
≤ x ≤ 3
25f(x)=____,0
≤ x ≤ 2 26f(x)=x²-
x²,-1 ≤ x ≤ 1
27f(x) =x2/3,0 ≤x
≤ 228 f(x)=|x-3|1≤x
≤ 4
29What is the average distance between a pointx in the interval[5,8] and the origin ?
30What is the average distance between a point in the interval [ -4,3 ]and the origin ?
31Find the average distance from the origin to a point on the curvey=x3/2, 0 ≤
x≤ 3,
withrespecttox.
32A particle moves with velocityv=
6tfrom timet = 0 to
t=10. Find its averagevelocity
withrespectto (a) time , (b) distance.
33An object moves with velocityv=f(t) from
t= a to t=b. Thus its average velocity with
respecttotime is
_________________
Showthatits average velocity with respect to distance is
分享到:
相关推荐
在这个问题中,我们关注的是一个特定的int数组{1, 3, 5, -2, 4, 6},我们需要计算这个数组中的最大值、最小值、元素和以及平均值。这些都是数据分析和算法基础中的关键概念。 1. **最大值**:数组中的最大值是指...
6. **添加平均线**:为了突出平均值,可以在图表上添加一条平均线。这可以通过插入一个“参考线”来实现。在“设计”或“布局”选项卡中,选择“添加趋势线”或“添加参考线”,然后选择适合的类型(如平均值)。 7...
6. **平均数与部分数的关系**:第六题中,已知三科的平均成绩和一科的具体分数,可以利用平均数公式求出另外两科的总分,进而求出这两科的平均分。 7. **男女混合群体的平均值**:第七题要求的是全班的平均看书本数...
6. 实际问题中平均值不等式的应用:在实际问题中,比如物理问题、经济学问题、统计学问题中,平均值不等式也有广泛的应用,它帮助我们得出某些量的大概估计或最优解。 7. 关于某些数学表达式和公式的讨论:文档中...
### 计算平均值和最大值的Java程序详解 #### 一、程序概述 本篇文章将详细介绍一个使用Java编写的简单程序,该程序的主要功能是接收用户输入的一组整数,并计算出这些数字的平均值和最大值。通过本文的学习,您...
3. **计算初始平均值**:对窗口内的第一个N个数据点求平均,将结果存入结果序列的第一个位置。 4. **滑动窗口**:随着数据点的增加,窗口向右移动,丢弃最旧的数据点,包含新的数据点,再次计算平均值并存储。这个...
12. **多个变量的均值不等式应用**:第12题中,利用算术平均值和几何平均值的不等式关系,求得表达式的最小值。 13. **距离乘积的最大值**:在几何问题中,可以通过面积相等和均值不等式来求解点到多边形各边距离...
其中,\( Z_t \) 是第t期的指数加权移动平均值,\( Y_t \) 是第t期的实际观测值,\( Z_{t-1} \) 是第t-1期的指数加权移动平均值。 5. 结果分析:通过计算得到的EWMA序列,你可以观察数据的趋势,识别异常值,或者...
6. **运行与测试**:保存以上代码,运行程序,用户可以在第一个文本框中输入一系列用逗号分隔的数字,然后点击按钮,平均值将在第二个文本框中显示。 通过这个简单的VB程序,我们可以学习到如何处理用户输入、声明...
6. **平均数的变化**:改变一个数值会影响到整体的平均数。例如在例3中,一个数的改变导致了平均数的上升或下降,从而可以求出原来的数据。 7. **平均数与总和的关系**:当去掉或添加数据时,平均数的变化反映了...
6. 加权平均值法 7. 品位指标值变化情况 8. 连续光滑的复合曲线 9. 曲线拟合方法 10. 曲线方程系数求解 标签:平均品位计算方法、三次多项式曲线拟合、多边形图处理、积分方法、矿体指标值分析。
这里有两个条件:当`Array_type`小于等于12时计算第一列的平均值,大于12时计算第二列的平均值。 ```matlab Matrix_r(i,1) = mean(doubleC_Mat(doubleC_Mat(:,1),2)); Matrix_r(i,2) = mean(doubleC_Mat(doubleC_...
7. 不同时间段工作效率的平均值:第7题,修路的平均速度要考虑不同阶段的工作效率,总平均每天修路的速度为两段时间平均速度的加权平均。 8. 平均数的计算方法:第8题,根据平均数乘以数量等于总和的原理,可以逆...
4. **条件筛选与计算平均值** (Step_5): 在循环内部,将读取的数据转换为双精度浮点数(`doubleC_Mat`),然后对满足条件的数据(例如 `doubleC_Mat(:,1)和 `doubleC_Mat(:,1)>12`)计算第二列的平均值,分别存储在 ...
6. **结果处理**:规定了如何计算和解释测量数据,包括电阻值的平均值、最小值和最大值的确定,以及异常情况的处理。 7. **质量控制**:标准还提出了定期校准试验设备和定期复验的要求,以保证试验的准确性和有效性...
6. 气温的平均值:在第11页,提出了计算一周内最高气温和最低气温平均值的问题。这需要分别对最高温度和最低温度的数据进行求和再除以天数,以了解一周内的平均最高温和最低温。 总的来说,这份课件通过生动的例子...
printf("第%d行的平均值是:", i+1); avg = (a[i][0] + a[i][1] + a[i][2]) / 3; printf("%.2f\n", avg); } } ``` 在上面的代码中,我们首先打开了数据文件array.dat,并使用while循环读取文件中的数据。然后,...
本示例主要讲解如何定义一个一维数组,并通过编程计算出数组中的最大值、最小值以及平均值。这是一些基本的算法实现,对于任何程序员来说,理解并掌握这些概念都是至关重要的。 首先,让我们了解一下一维数组的基本...