- 浏览: 184011 次
- 性别:
- 来自: 湖南@深圳
-
文章分类
最新评论
-
yaov:
mark
Super CSV用于处理CSV文件的Java开源项目 -
攻城小狮:
感谢 这个对CellProcessor的介绍很容易理解。
Super CSV用于处理CSV文件的Java开源项目 -
像风一样拘束:
...
(转)结:FORM中使用onSubmit="return false"防止表单自动提交,以及submit和button提交表单的区别 -
focuswsdy:
嗯啊,谢了,有用
The import com... cannot be resolved -
selie:
有用,谢谢
The import com... cannot be resolved
参考:http://wanglihu.iteye.com/blog/247473
(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效): ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2) WHERE子句中的连接顺序.: ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾. (3) SELECT子句中避免使用 ‘ * ‘: ORACLE在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4) 减少访问数据库的次数: ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6) 使用DECODE函数来减少处理时间: 使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7) 整合简单,无关联的数据库访问: 如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8) 删除重复记录: 最高效的删除重复记录方法 ( 因为使用了ROWID)例子: DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID) FROM EMP X WHERE X.EMP_NO = E.EMP_NO); (9) 用TRUNCATE替代DELETE: 当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML) (10) 尽量多使用COMMIT: 只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少: COMMIT所释放的资源: a. 回滚段上用于恢复数据的信息. b. 被程序语句获得的锁 c. redo log buffer 中的空间 d. ORACLE为管理上述3种资源中的内部花费 (11) 用Where子句替换HAVING子句: 避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
(12) 减少对表的查询: 在含有子查询的SQL语句中,要特别注意减少对表的查询.例子: SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
(13) 通过内部函数提高SQL效率.: 复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14) 使用表的别名(Alias): 当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN: 在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS. 例子: (高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X’ FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB’) (低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB’)
(16) 识别’低效执行’的SQL语句: 虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法: SELECT EXECUTIONS , DISK_READS, BUFFER_GETS, ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio, ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run, SQL_TEXT FROM V$SQLAREA WHERE EXECUTIONS>0 AND BUFFER_GETS > 0 AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8 ORDER BY 4 DESC;
(17) 用索引提高效率: 索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.: ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
(18) 用EXISTS替换DISTINCT: 当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子: (低效): SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E WHERE D.DEPT_NO = E.DEPT_NO (高效): SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X’ FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
(19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
(20) 在java代码中尽量少用连接符“+”连接字符串!
(21) 避免在索引列上使用NOT 通常, 我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
(22) 避免在索引列上使用计算. WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描. 举例: 低效: SELECT … FROM DEPT WHERE SAL * 12 > 25000; 高效: SELECT … FROM DEPT WHERE SAL > 25000/12;
(23) 用>=替代> 高效: SELECT * FROM EMP WHERE DEPTNO >=4 低效: SELECT * FROM EMP WHERE DEPTNO >3 两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
(24) 用UNION替换OR (适用于索引列) 通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引. 高效: SELECT LOC_ID , LOC_DESC , REGION FROM LOCATION WHERE LOC_ID = 10 UNION SELECT LOC_ID , LOC_DESC , REGION FROM LOCATION WHERE REGION = “MELBOURNE” 低效: SELECT LOC_ID , LOC_DESC , REGION FROM LOCATION WHERE LOC_ID = 10 OR REGION = “MELBOURNE” 如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
(25) 用IN来替换OR 这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 低效: SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30 高效 SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30); (26) 避免在索引列上使用IS NULL和IS NOT NULL 避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引. 低效: (索引失效) SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL; 高效: (索引有效) SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
(27) 总是使用索引的第一个列: 如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
(28) 用UNION-ALL 替换UNION ( 如果有可能的话): 当SQL语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量 低效: SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ UNION SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ 高效: SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ UNION ALL SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ (29) 用WHERE替代ORDER BY: ORDER BY 子句只在两种严格的条件下使用索引. ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序. ORDER BY中所有的列必须定义为非空. WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列. 例如: 表DEPT包含以下列: DEPT_CODE PK NOT NULL DEPT_DESC NOT NULL DEPT_TYPE NULL 低效: (索引不被使用) SELECT DEPT_CODE FROM DEPT ORDER BY DEPT_TYPE 高效: (使用索引) SELECT DEPT_CODE FROM DEPT WHERE DEPT_TYPE > 0
(30) 避免改变索引列的类型.: 当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换. 假设 EMPNO是一个数值类型的索引列. SELECT … FROM EMP WHERE EMPNO = ‘123’ 实际上,经过ORACLE类型转换, 语句转化为: SELECT … FROM EMP WHERE EMPNO = TO_NUMBER(‘123’) 幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变. 现在,假设EMP_TYPE是一个字符类型的索引列. SELECT … FROM EMP WHERE EMP_TYPE = 123 这个语句被ORACLE转换为: SELECT … FROM EMP WHERETO_NUMBER(EMP_TYPE)=123 因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
(31) 需要当心的WHERE子句: 某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子. 在下面的例子里, (1)‘!=’ 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||’是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+’是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
(32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高. b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要块几倍乃至几千倍! (33) 避免使用耗费资源的操作: 带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎 执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
(34) 优化GROUP BY: 提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多. 低效: SELECT JOB , AVG(SAL) FROM EMP GROUP JOB HAVING JOB = ‘PRESIDENT’ OR JOB = ‘MANAGER’ 高效: SELECT JOB , AVG(SAL) FROM EMP WHERE JOB = ‘PRESIDENT’ OR JOB = ‘MANAGER’ GROUP JOB
(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效): ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2) WHERE子句中的连接顺序.: ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾. (3) SELECT子句中避免使用 ‘ * ‘: ORACLE在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4) 减少访问数据库的次数: ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6) 使用DECODE函数来减少处理时间: 使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7) 整合简单,无关联的数据库访问: 如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8) 删除重复记录: 最高效的删除重复记录方法 ( 因为使用了ROWID)例子: DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID) FROM EMP X WHERE X.EMP_NO = E.EMP_NO); (9) 用TRUNCATE替代DELETE: 当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML) (10) 尽量多使用COMMIT: 只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少: COMMIT所释放的资源: a. 回滚段上用于恢复数据的信息. b. 被程序语句获得的锁 c. redo log buffer 中的空间 d. ORACLE为管理上述3种资源中的内部花费 (11) 用Where子句替换HAVING子句: 避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
(12) 减少对表的查询: 在含有子查询的SQL语句中,要特别注意减少对表的查询.例子: SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
(13) 通过内部函数提高SQL效率.: 复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14) 使用表的别名(Alias): 当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN: 在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS. 例子: (高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X’ FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB’) (低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB’)
(16) 识别’低效执行’的SQL语句: 虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法: SELECT EXECUTIONS , DISK_READS, BUFFER_GETS, ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio, ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run, SQL_TEXT FROM V$SQLAREA WHERE EXECUTIONS>0 AND BUFFER_GETS > 0 AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8 ORDER BY 4 DESC;
(17) 用索引提高效率: 索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.: ALTER INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
(18) 用EXISTS替换DISTINCT: 当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子: (低效): SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E WHERE D.DEPT_NO = E.DEPT_NO (高效): SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X’ FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
(19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
(20) 在java代码中尽量少用连接符“+”连接字符串!
(21) 避免在索引列上使用NOT 通常, 我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
(22) 避免在索引列上使用计算. WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描. 举例: 低效: SELECT … FROM DEPT WHERE SAL * 12 > 25000; 高效: SELECT … FROM DEPT WHERE SAL > 25000/12;
(23) 用>=替代> 高效: SELECT * FROM EMP WHERE DEPTNO >=4 低效: SELECT * FROM EMP WHERE DEPTNO >3 两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
(24) 用UNION替换OR (适用于索引列) 通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引. 高效: SELECT LOC_ID , LOC_DESC , REGION FROM LOCATION WHERE LOC_ID = 10 UNION SELECT LOC_ID , LOC_DESC , REGION FROM LOCATION WHERE REGION = “MELBOURNE” 低效: SELECT LOC_ID , LOC_DESC , REGION FROM LOCATION WHERE LOC_ID = 10 OR REGION = “MELBOURNE” 如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
(25) 用IN来替换OR 这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 低效: SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30 高效 SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30); (26) 避免在索引列上使用IS NULL和IS NOT NULL 避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引. 低效: (索引失效) SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL; 高效: (索引有效) SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
(27) 总是使用索引的第一个列: 如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
(28) 用UNION-ALL 替换UNION ( 如果有可能的话): 当SQL语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量 低效: SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ UNION SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ 高效: SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ UNION ALL SELECT ACCT_NUM, BALANCE_AMT FROM DEBIT_TRANSACTIONS WHERE TRAN_DATE = ’31-DEC-95’ (29) 用WHERE替代ORDER BY: ORDER BY 子句只在两种严格的条件下使用索引. ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序. ORDER BY中所有的列必须定义为非空. WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列. 例如: 表DEPT包含以下列: DEPT_CODE PK NOT NULL DEPT_DESC NOT NULL DEPT_TYPE NULL 低效: (索引不被使用) SELECT DEPT_CODE FROM DEPT ORDER BY DEPT_TYPE 高效: (使用索引) SELECT DEPT_CODE FROM DEPT WHERE DEPT_TYPE > 0
(30) 避免改变索引列的类型.: 当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换. 假设 EMPNO是一个数值类型的索引列. SELECT … FROM EMP WHERE EMPNO = ‘123’ 实际上,经过ORACLE类型转换, 语句转化为: SELECT … FROM EMP WHERE EMPNO = TO_NUMBER(‘123’) 幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变. 现在,假设EMP_TYPE是一个字符类型的索引列. SELECT … FROM EMP WHERE EMP_TYPE = 123 这个语句被ORACLE转换为: SELECT … FROM EMP WHERETO_NUMBER(EMP_TYPE)=123 因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
(31) 需要当心的WHERE子句: 某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子. 在下面的例子里, (1)‘!=’ 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||’是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+’是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
(32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高. b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要块几倍乃至几千倍! (33) 避免使用耗费资源的操作: 带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎 执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
(34) 优化GROUP BY: 提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多. 低效: SELECT JOB , AVG(SAL) FROM EMP GROUP JOB HAVING JOB = ‘PRESIDENT’ OR JOB = ‘MANAGER’ 高效: SELECT JOB , AVG(SAL) FROM EMP WHERE JOB = ‘PRESIDENT’ OR JOB = ‘MANAGER’ GROUP JOB
发表评论
-
MongoDB
2014-05-16 18:26 854一、下载 MongoDB的官网是:http://www.mon ... -
oracle常用命令问题大全(转)
2012-05-03 09:08 963一、ORACLE的启动和关闭 1、在单机环境下 要想启动或 ... -
Informix 数据库常用问题解决方案
2012-04-19 17:26 8351转自博文: http://blog.csd ... -
sql临时表
2011-12-03 17:26 1138SQL中系统临时表的使用和禁忌 及 Exec(SQLScrip ... -
Sybase客户端添加数据库服务---dscp
2011-11-08 18:04 1143例如:在192的机器上连接195的数据库 首先知道195的数据 ... -
Sybase 查看与目标表有外键关联的表名称
2011-11-08 15:01 2700目标表为:TestTable select sysobjec ... -
Sybase 数据库BCP命令导入导出数据 增强版
2011-06-05 03:10 53921.使用BCP导出整个表或视图。 BCP AdventureW ... -
Sybase数据库 行列转换
2011-05-25 16:09 2179数据表的内容如下:(这是一个人的一年的一个数据) 现在需要把 ... -
Sybase 和 Oracle 数据库 查询死锁的方法
2011-05-24 14:51 4719Sybase 查询死锁spid: select l.spi ... -
Sybase 数据库BCP命令导入导出数据
2011-05-19 16:18 4167BCP是SYBASE公司提供专门 ... -
Sybase sql语句报 void type 错误
2011-04-29 11:04 1241遇到一个问题: Sybase数据,查询当给一个null起别名 ... -
Sybase数据库死锁
2011-04-20 10:49 1701查看锁表情况: sp_who [dbname] 查看 ... -
Sybase 数据库进行模糊查询时的问题
2011-01-07 15:25 1573今天碰到一个很奇怪的问题,Sybase数据库进行模糊查询(li ... -
Sybase修改表字段时,报错“the 'select into 'database option is not enabled ”
2010-11-08 11:04 3354sybase,在对表结构进行修改的时候出现一个错误: sql: ... -
coalesce、isnull、nullif函数用法
2010-10-26 09:31 1879coalesce() 语法:coalesce ( expres ... -
Oracle&Sybase里查看所有表的SQL
2010-10-19 23:17 1390Oracle ======================= ... -
sybase与oracle 后台数据库启动方法
2010-10-08 09:30 846*******************注意关闭防火墙***** ... -
insert一条目标表中不存在的记录
2010-08-27 10:35 799目标表的创建语句: create table test_T ... -
Oracle 复制 同一张表的字段
2010-08-27 09:51 1367update table set field_A = fi ... -
各数据库(sql)取前N条记录
2010-07-29 17:59 9111. Oracle SELECT * FROM TABLE1 ...
相关推荐
基于改进粒子群算法的DG储能选址定容优化模型:解决电力系统时序性问题的可靠程序解决方案,基于改进粒子群算法的DG储能选址定容模型优化解决电力系统问题,DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输
数学建模相关主题资源2
内容概要:本文详细介绍了一系列用于科学研究、工程项目和技术开发中至关重要的实验程序编写与文档报告撰写的资源和工具。从代码托管平台(GitHub/GitLab/Kaggle/CodeOcean)到云端计算环境(Colab),以及多种类型的编辑器(LaTeX/Microsoft Word/Overleaf/Typora),还有涵盖整个研究周期的各种辅助工具:如可视化工具(Tableau)、数据分析平台(R/Pandas)、项目管理工具(Trello/Jira)、数据管理和伦理审核支持(Figshare/IRB等),最后提供了典型报告的具体结构指导及其范本实例链接(arXiv/PubMed)。这为实验流程中的各个环节提供了系统的解决方案,极大地提高了工作的效率。 适合人群:高校学生、科研工作者、工程技术人员以及从事学术写作的人员,无论是新手入门还是有一定经验的人士都能从中受益。 使用场景及目标:帮助读者高效地准备并开展实验研究活动;促进团队间协作交流;规范研究报告的形式;提高对所收集资料的安全性和隐私保护意识;确保遵循国际公认的伦理准则进行实验。
四轮毂驱动电动汽车稳定性控制策略:基于滑模与模糊神经网络的转矩分配与仿真研究,四轮毂驱动电动汽车稳定性控制:基于滑模与模糊神经网络的转矩分配策略及联合仿真验证,四轮毂驱动电动汽车稳定性控制,分布式驱动转矩分配。 上层基于滑模,模糊神经网络控制器决策横摆力矩,下层基于动态载荷分配,最优分配,平均分配均可做。 simulink与carsim联合仿真。 ,四轮毂驱动;电动汽车稳定性控制;分布式驱动;转矩分配;滑模控制;模糊神经网络控制器;横摆力矩;动态载荷分配;最优分配;平均分配;Simulink仿真;Carsim仿真,四驱电动稳定性控制:滑模与模糊神经网络决策的转矩分配研究
本资源提供了一份详细的PyCharm安装教程,涵盖下载、安装、配置、激活及使用步骤,适合新手快速搭建Python开发环境。
毕业设计
原版宋体.ttf,原版宋体安装文件,安装方式,直接右键安装。
利用Xilinx FPGA内嵌的软核处理器MicroBlaze,加上自主编写的AXI_IIC控制器,实现对IMX327传感器IIC总线的控制,同时辅以UART调试串口,实现系统状态的实时监控与调试。
在 GEE(Google Earth Engine)中,XEE 包是一个用于处理和分析地理空间数据的工具。以下是对 GEE 中 XEE 包的具体介绍: 主要特性 地理数据处理:提供强大的函数和工具,用于处理遥感影像和其他地理空间数据。 高效计算:利用云计算能力,支持大规模数据集的快速处理。 可视化:内置可视化工具,方便用户查看和分析数据。 集成性:可以与其他 GEE API 和工具无缝集成,支持多种数据源。 适用场景 环境监测:用于监测森林砍伐、城市扩展、水体变化等环境问题。 农业分析:分析作物生长、土地利用变化等农业相关数据。 气候研究:研究气候变化对生态系统和人类活动的影响。
毕业设计
整个文件的代码
名字微控制器_STM32_DFU_引导加载程序_dapboo_1740989527.zip
详细介绍及样例数据:https://blog.csdn.net/T0620514/article/details/145991332
anaconda配置pytorch环境
立体仓库控制组态王6.55与三菱PLC联机仿真程序:视频教程与IO表接线图CAD详解,9仓位立体仓库控制系统优化方案:组态王6.55与三菱PLC联机仿真程序视频教程及IO表接线图CAD详解,9仓位立体仓库控制组态王6.55和三菱PLC联机仿真程序+视频+带io表接线图CAD ,关键词:立体仓库;控制组态王6.55;三菱PLC;联机仿真程序;视频;io表接线图;CAD,立体仓库控制组态王与三菱PLC联机仿真程序资源包
基于Maxwwell设计的经典外转子永磁同步电机案例:直流母线24V,大功率与高效率驱动设计,基于Maxwell设计的经典永磁同步电机案例:200W功率,外转子结构,直流母线电压与电机参数详解,基于maxwwell设计的经典200W,2200RPM 外转子,直流母线24V,42极36槽,定子外径81.5 轴向长度15 ,0.86Nm, 永磁同步电机(PMSM)设计案例,该案例可用于生产,或者学习用 ,经典设计案例; 200W; 2200RPM外转子; 直流母线24V; 42极36槽; 定子外径81.5; 轴向长度15; 永磁同步电机(PMSM); 生产学习用。,经典200W永磁同步电机设计案例:Maxwell外转子,高效率2200RPM直流母线系统
C# Modbus RTU协议主站设计工程源码详解:支持多从站访问与多线程实现,带注释开源dll文件,C# Modbus RTU协议主站设计工程源码解析:多线程实现访问多个从站功能的开源dll文件,C# Modbus RTU协议主站设计工程源码带注释,开源dll文件,支持访问多个从站,多线程实现 ,C#; Modbus RTU协议; 主站设计; 工程源码; 注释; 开源dll; 多从站访问; 多线程实现,《C# Modbus RTU主站源码:多线程支持访问多从站开源DLL文件详解》
MATLAB Simulink下的四旋翼无人机PID控制仿真模型研究,MATLAB Simulink下的四旋翼无人机PID控制仿真模型研究,MATLAB Simulink 四旋翼仿真模型 四轴无人机PID控制 ,MATLAB; Simulink; 四旋翼仿真模型; 四轴无人机; PID控制,MATLAB Simulink四旋翼仿真模型中四轴无人机的PID控制研究
复现文献中COMSOL模拟天然气水合物两相渗流的研究,COMSOL模拟天然气水合物两相渗流:文献复现与分析,comsol天然气水合物两相渗流,文献复现 ,comsol; 天然气水合物; 两相渗流; 文献复现,复现文献:comsol模拟天然气水合物两相渗流研究