Google文件系统(Google File System,GFS)是一个大型的分布式文件系统。它为Google云计算提供海量存储,并且与Chubby、MapReduce以及Bigtable 等技术结合十分紧密,处于所有核心技术的底层。由于GFS并不是一个开源的系统,我们仅仅能从Google公布的技术文档来获得一点了解,而无法进行深入 的研究。
当前主流分布式文件系统有RedHat的GFS[3](Global File System)、IBM的GPFS[4]、Sun的Lustre[5]等。这些系统通常用于高性能计算或大型数据中心,对硬件设施条件要求较高。以 Lustre文件系统为例,它只对元数据管理器MDS提供容错解决方案,而对于具体的数据存储节点OST来说,则依赖其自身来解决容错的问题。例 如,Lustre推荐OST节点采用RAID技术或SAN存储区域网来容错,但由于Lustre自身不能提供数据存储的容错,一旦OST发生故障就无法恢 复,因此对OST的稳定性就提出了相当高的要求,从而大大增加了存储的成本,而且成本会随着规模的扩大线性增长。
正如李开复所说的那样,创新固然重要,但有用的创新更重要。创新的价值,取决于一项创新在新颖、有用和可行性这三个方面的综合表现。Google GFS的新颖之处并不在于它采用了多么令人惊讶的技术,而在于它采用廉价的商用机器构建分布式文件系统,同时将GFS的设计与Google应用的特点紧密 结合,并简化其实现,使之可行,最终达到创意新颖、有用、可行的完美组合。GFS使用廉价的商用机器构建分布式文件系统,将容错的任务交由文件系统来完 成,利用软件的方法解决系统可靠性问题,这样可以使得存储的成本成倍下降。由于GFS中服务器数目众多,在GFS中服务器死机是经常发生的事情,甚至都不 应当将其视为异常现象,那么如何在频繁的故障中确保数据存储的安全、保证提供不间断的数据存储服务是GFS最核心的问题。GFS的精彩在于它采用了多种方 法,从多个角度,使用不同的容错措施来确保整个系统的可靠性。
2.1.1 系统架构
GFS的系统架构如图2-1[1]所示。GFS将整个系统的节点分为三类角色:Client(客户端)、Master(主服务器)和Chunk Server(数据块服务器)。Client是GFS提供给应用程序的访问接口,它是一组专用接口,不遵守POSIX规范,以库文件的形式提供。应用程序 直接调用这些库函数,并与该库链接在一起。Master是GFS的管理节点,在逻辑上只有一个,它保存系统的元数据,负责整个文件系统的管理,是GFS文 件系统中的“大脑”。Chunk Server负责具体的存储工作。数据以文件的形式存储在Chunk Server上,Chunk Server的个数可以有多个,它的数目直接决定了GFS的规模。GFS将文件按照固定大小进行分块,默认是64MB,每一块称为一个Chunk(数据 块),每个Chunk都有一个对应的索引号(Index)。
图2-1 GFS体系结构
客户端在访问GFS时,首先访问Master节点,获取将要与之进行交互的Chunk Server信息,然后直接访问这些Chunk Server完成数据存取。GFS的这种设计方法实现了控制流和数据流的分离。Client与Master之间只有控制流,而无数据流,这样就极大地降低 了Master的负载,使之不成为系统性能的一个瓶颈。Client与Chunk Server之间直接传输数据流,同时由于文件被分成多个Chunk进行分布式存储,Client可以同时访问多个Chunk Server,从而使得整个系统的I/O高度并行,系统整体性能得到提高。
相对于传统的分布式文件系统,GFS针对Google应用的特点从多个方面进行了简化,从而在一定规模下达到成本、可靠性和性能的最佳平衡。具体来说,它具有以下几个特点。
1.采用中心服务器模式
GFS采用中心服务器模式来管理整个文件系统,可以大大简化设计,从而降低实现难度。Master管理了分布式文件系统中的所有元数据。文件划分为 Chunk进行存储,对于Master来说,每个Chunk Server只是一个存储空间。Client发起的所有操作都需要先通过Master才能执行。这样做有许多好处,增加新的Chunk Server是一件十分容易的事情,Chunk Server只需要注册到Master上即可,Chunk Server之间无任何关系。如果采用完全对等的、无中心的模式,那么如何将Chunk Server的更新信息通知到每一个Chunk Server,会是设计的一个难点,而这也将在一定程度上影响系统的扩展性。Master维护了一个统一的命名空间,同时掌握整个系统内Chunk Server的情况,据此可以实现整个系统范围内数据存储的负载均衡。由于只有一个中心服务器,元数据的一致性问题自然解决。当然,中心服务器模式也带来 一些固有的缺点,比如极易成为整个系统的瓶颈等。GFS采用多种机制来避免Master成为系统性能和可靠性上的瓶颈,如尽量控制元数据的规模、对 Master进行远程备份、控制信息和数据分流等。
2.不缓存数据
缓存(Cache)机制是提升文件系统性能的一个重要手段,通用文件系统为了提高性能,一般需要实现复杂的缓存机制。GFS文件系统根据应用的特 点,没有实现缓存,这是从必要性和可行性两方面考虑的。从必要性上讲,客户端大部分是流式顺序读写,并不存在大量的重复读写,缓存这部分数据对系统整体性 能的提高作用不大;而对于Chunk Server,由于GFS的数据在Chunk Server上以文件的形式存储,如果对某块数据读取频繁,本地的文件系统自然会将其缓存。从可行性上讲,如何维护缓存与实际数据之间的一致性是一个极其 复杂的问题,在GFS中各个Chunk Server的稳定性都无法确保,加之网络等多种不确定因素,一致性问题尤为复杂。此外由于读取的数据量巨大,以当前的内存容量无法完全缓存。对于存储在 Master中的元数据,GFS采取了缓存策略,GFS中Client发起的所有操作都需要先经过Master。Master需要对其元数据进行频繁操 作,为了提高操作的效率,Master的元数据都是直接保存在内存中进行操作。同时采用相应的压缩机制降低元数据占用空间的大小,提高内存的利用率。
3.在用户态下实现
文件系统作为操作系统的重要组成部分,其实现通常位于操作系统底层。以Linux为例,无论是本地文件系统如Ext3文件系统,还是分布式文件系统 如Lustre等,都是在内核态实现的。在内核态实现文件系统,可以更好地和操作系统本身结合,向上提供兼容的POSIX接口。然而,GFS却选择在用户 态下实现,主要基于以下考虑。
在用户态下实现,直接利用操作系统提供的POSIX编程接口就可以存取数据,无需了解操作系统的内部实现机制和接口,从而降低了实现的难度,并提高了通用性。
POSIX接口提供的功能更为丰富,在实现过程中可以利用更多的特性,而不像内核编程那样受限。 用户态下有多种调试工具,而在内核态中调试相对比较困难。 用户态下,Master和Chunk Server都以进程的方式运行,单个进程不会影响到整个操作系统,从而可以对其进行充分优化。在内核态下,如果不能很 好地掌握其特性,效率不但不会高,甚至还会影响到整个系统运行的稳定性。 用户态下,GFS和操作系统运行在不同的空间,两者耦合性降低,从而方便GFS自身和内核的单独升级。 |
4.只提供专用接口
通常的分布式文件系统一般都会提供一组与POSIX规范兼容的接口。其优点是应用程序可以通过操作系统的统一接口来透明地访问文件系统,而不需要重 新编译程序。GFS在设计之初,是完全面向Google的应用的,采用了专用的文件系统访问接口。接口以库文件的形式提供,应用程序与库文件一起编 译,Google应用程序在代码中通过调用这些库文件的API,完成对GFS文件系统的访问。采用专用接口有以下好处。
降低了实现的难度。通常与POSIX兼容的接口需要在操作系统内核一级实现,而GFS是在应用层实现的。 采用专用接口可以根据应用的特点对应用提供一些特殊支持,如支持多个文件并发追加的接口等。 专用接口直接和Client、Master、Chunk Server交互,减少了操作系统之间上下文的切换,降低了复杂度,提高了效率。 |
2.1.2 容错机制
1.Master容错
具体来说,Master上保存了GFS文件系统的三种元数据。
命名空间(Name Space),也就是整个文件系统的目录结构。 Chunk与文件名的映射表。 Chunk副本的位置信息,每一个Chunk默认有三个副本。 |
首先就单个Master来说,对于前两种元数据,GFS通过操作日志来提供容错功能。第三种元数据信息则直接保存在各个Chunk Server上,当Master启动或Chunk Server向Master注册时自动生成。因此当Master发生故障时,在磁盘数据保存完好的情况下,可以迅速恢复以上元数据。为了防止Master 彻底死机的情况,GFS还提供了Master远程的实时备份,这样在当前的GFS Master出现故障无法工作的时候,另外一台GFS Master可以迅速接替其工作。
2.Chunk Server容错
GFS采用副本的方式实现Chunk Server的容错。每一个Chunk有多个存储副本(默认为三个),分布存储在不同的Chunk Server上。副本的分布策略需要考虑多种因素,如网络的拓扑、机架的分布、磁盘的利用率等。对于每一个Chunk,必须将所有的副本全部写入成功,才 视为成功写入。在其后的过程中,如果相关的副本出现丢失或不可恢复等状况,Master会自动将该副本复制到其他Chunk Server,从而确保副本保持一定的个数。尽管一份数据需要存储三份,好像磁盘空间的利用率不高,但综合比较多种因素,加之磁盘的成本不断下降,采用副 本无疑是最简单、最可靠、最有效,而且实现的难度也最小的一种方法。
GFS中的每一个文件被划分成多个Chunk,Chunk的默认大小是64MB,这是因为Google应用中处理的文件都比较大,以64MB为单位 进行划分,是一个较为合理的选择。Chunk Server存储的是Chunk的副本,副本以文件的形式进行存储。每一个Chunk以Block为单位进行划分,大小为64KB,每一个Block对应 一个32bit的校验和。当读取一个Chunk副本时,Chunk Server会将读取的数据和校验和进行比较,如果不匹配,就会返回错误,从而使Client选择其他Chunk Server上的副本。
2.1.3 系统管理技术
严格意义上来说,GFS是一个分布式文件系统,包含从硬件到软件的整套解决方案。除了上面提到的GFS的一些关键技术外,还有相应的系统管理技术来支持整个GFS的应用,这些技术可能并不一定为GFS所独有。
1.大规模集群安装技术
安装GFS的集群中通常有非常多的节点,文献[1]中最大的集群超过1000个节点,而现在的Google数据中心动辄有万台以上的机器在运行。因此迅速地安装、部署一个GFS的系统,以及迅速地进行节点的系统升级等,都需要相应的技术支撑。
2.故障检测技术
GFS是构建在不可靠的廉价计算机之上的文件系统,由于节点数目众多,故障发生十分频繁,如何在最短的时间内发现并确定发生故障的Chunk Server,需要相关的集群监控技术。
3.节点动态加入技术
当有新的Chunk Server加入时,如果需要事先安装好系统,那么系统扩展将是一件十分烦琐的事情。如果能够做到只需将裸机加入,就会自动获取系统并安装运行,那么将会大大减少GFS维护的工作量。
4.节能技术
有关数据表明,服务器的耗电成本大于当初的购买成本,因此Google采用了多种机制来降低服务器的能耗,例如对服务器主板进行修改,采用蓄电池代 替昂贵的UPS(不间断电源系统),提高能量的利用率。Rich Miller 在一篇关于数据中心的博客文章中表示,这个设计让 Google 的 UPS 利用率达到99.9%,而一般数据中心只能达到92%~95%。
博客链接:http://blog.csdn.net/gloud/archive/2010/06/12/5667549.aspx
相关推荐
《Hadoop分布式集群大数据云计算源码视频教程》是一套深入解析Hadoop技术栈及大数据云计算实践的综合学习资源。该教程旨在帮助学习者理解和掌握Hadoop在分布式集群环境中的核心概念、工作原理以及实际应用,从而提升...
源自Google GFS,BigTable,MapReduce 论文。 == HDFS == HDFS (Hadoop Distributed File System),Hadoop 分布式文件系统。 NameNode,HDFS命名服务器,负责与DataNode文件元信息保存。 DataNode,HDFS数据节点,负责存储...
Hadoop基于Google的MapReduce编程模型和GFS(Google File System)分布式文件系统,旨在提供高容错性和可扩展性。 2. **Hadoop生态系统**:包括HDFS(Hadoop Distributed File System),MapReduce,YARN(Yet ...
描述中提到的GFS(Google File System)是谷歌开发的一种分布式文件系统,针对大规模数据处理进行了优化,其设计目标是能在众多廉价且可能故障的硬件上构建出高可靠性的系统。 GFS的主要特点包括: 1. **硬件出错...
它基于Google的MapReduce编程模型和GFS分布式文件系统,具有高容错性和可扩展性。Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce。 HDFS是Hadoop的数据存储系统,它将大文件分块存储在多...
【大数据云计算技术 hadoop实战培训】的PPT深入解析了如何应对海量数据处理的挑战,以及Hadoop在其中的关键作用。大数据是指无法用传统数据库管理工具处理的大量、高速、多样的信息资产,而云计算则提供了按需分配...
Hadoop最初是受到Google开发的分布式文件系统(Google File System, GFS)和MapReduce编程模型的启发,由Doug Cutting等人在Apache软件基金会的框架下进行开发,其设计目标是为了处理大规模数据集。Hadoop的出现与...
Google 的 GFS(Google File System)和其开源实现 HDFS(Hadoop Distributed File System)是典型的分布式文件系统,它们能够将数据分割并存储在多台服务器上,提供高可用性和容错性。这些系统允许快速访问和处理PB...
Google于2003年在SOSP上发表了《The Google File System》,于2004年在OSDI上发表了《MapReduce: Simplified Data Processing on Large Clusters》,于2006年在OSDI上发表了《Bigtable: A Distributed Storage ...
GFS(Google File System)是一种分布式存储方式,用于存储大量数据。它将数据分配到多个服务器上,以提高存储容量和数据的可靠性。GFS广泛应用于大数据分析和机器学习等领域。 HDFS(Hadoop Distributed File ...
- **Shared-Everything**: DFS (Distributed File System) 加上Map-Reduce模型,使得计算资源可以被完全共享,提高了资源利用率。例如BigQuery和MaxCompute就是此类架构的典型例子。进一步的发展趋势是Disaggregate ...
在云计算领域,Google无疑是引领潮流的巨头之一,其在2000年代初期发表的三篇论文——"The Google File System"(GFS)、"MapReduce: Simplified Data Processing on Large Clusters"和"Bigtable: A Distributed ...
在IT行业中,Google是技术创新的巨头,其三大核心技术——MapReduce、GFS(Google File System)和Bigtable,对大数据处理和云计算领域产生了深远影响。这些技术是Google为解决自身大规模数据处理问题而研发的,并...
标题中的“Google-Bigtable中文版、Google-File-System中文版、Google-MapReduce中文版”涵盖了三个关键的大数据处理技术,它们分别是Google Bigtable、Google File System(GFS)和Google MapReduce。这些都是由...
这个系统在2003年首次公开了其技术细节,通过一篇名为《The Google File System》的论文。GFS的设计目标是为了解决互联网搜索引擎和其他大数据应用的需求,提供高可用性、高吞吐量和容错能力。中文版的GFS文档可能...
谷歌则以其大规模分布式计算系统,如GFS(Google File System)、MapReduce和Bigtable,展示了其在云计算领域的实力。微软的Windows Azure提供了一个平台,让用户能够在云端构建、部署和管理应用程序。 【云计算的...
- **2008年**:Google发表了关于GFS(Google File System)和MapReduce的研究论文,为大规模数据处理提供了理论和技术支持。 - **2003年**:Doung Cutting创立了Nutch搜索引擎项目,并在此基础上实现了DFS...
HDFS,全称为Hadoop Distributed File System,是Apache Hadoop项目的核心组件之一,设计用于存储和处理大规模数据集。本课程的主要目标是深入理解HDFS的文件接口及其在大数据处理中的作用。 在Hadoop中,文件系统...
谷歌的三驾马车——Google File System(GFS)、MapReduce和Bigtable,是构建大规模分布式计算系统的核心技术。这三者共同构成了谷歌处理海量数据的基础架构,为搜索引擎、云计算和其他大数据应用提供了强大的支撑。...