`

大文件,5亿整数,怎么排?

 
阅读更多

文章转自 :http://blog.csdn.net/gsky1986/article/details/46499529

 

问题

给你1个文件bigdata,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数:

6196302
3557681
6121580
2039345
2095006
1746773
7934312
2016371
7123302
8790171
2966901
...
7005375

现在要对这个文件进行排序,怎么搞?


内部排序


先尝试内排,选2种排序方式:

3路快排:


private final int cutoff = 8;

public <T> void perform(Comparable<T>[] a) {
        perform(a,0,a.length - 1);
    }

    private <T> int median3(Comparable<T>[] a,int x,int y,int z) {
        if(lessThan(a[x],a[y])) {
            if(lessThan(a[y],a[z])) {
                return y;
            }
            else if(lessThan(a[x],a[z])) {
                return z;
            }else {
                return x;
            }
        }else {
            if(lessThan(a[z],a[y])){
                return y;
            }else if(lessThan(a[z],a[x])) {
                return z;
            }else {
                return x;
            }
        }
    }

    private <T> void perform(Comparable<T>[] a,int low,int high) {
        int n = high - low + 1;
        //当序列非常小,用插入排序
        if(n <= cutoff) {
            InsertionSort insertionSort = SortFactory.createInsertionSort();
            insertionSort.perform(a,low,high);
            //当序列中小时,使用median3
        }else if(n <= 100) {
            int m = median3(a,low,low + (n >>> 1),high);
            exchange(a,m,low);
            //当序列比较大时,使用ninther
        }else {
            int gap = n >>> 3;
            int m = low + (n >>> 1);
            int m1 = median3(a,low,low + gap,low + (gap << 1));
            int m2 = median3(a,m - gap,m,m + gap);
            int m3 = median3(a,high - (gap << 1),high - gap,high);
            int ninther = median3(a,m1,m2,m3);
            exchange(a,ninther,low);
        }

        if(high <= low)
            return;
        //lessThan
        int lt = low;
        //greaterThan
        int gt = high;
        //中心点
        Comparable<T> pivot =  a[low];
        int i = low + 1;

        /*
        * 不变式:
        *   a[low..lt-1] 小于pivot -> 前部(first)
        *   a[lt..i-1] 等于 pivot -> 中部(middle)
        *   a[gt+1..n-1] 大于 pivot -> 后部(final)
        *
        *   a[i..gt] 待考察区域
        */

        while (i <= gt) {
            if(lessThan(a[i],pivot)) {
                //i-> ,lt ->
                exchange(a,lt++,i++);
            }else if(lessThan(pivot,a[i])) {
                exchange(a,i,gt--);
            }else{
                i++;
            }
        }

        // a[low..lt-1] < v = a[lt..gt] < a[gt+1..high].
        perform(a,low,lt - 1);
        perform(a,gt + 1,high);
    }

归并排序:

    /**
     * 小于等于这个值的时候,交给插入排序
     */
    private final int cutoff = 8;

    /**
     * 对给定的元素序列进行排序
     *
     * @param a 给定元素序列
     */
    @Override
    public <T> void perform(Comparable<T>[] a) {
        Comparable<T>[] b = a.clone();
        perform(b, a, 0, a.length - 1);
    }

    private <T> void perform(Comparable<T>[] src,Comparable<T>[] dest,int low,int high) {
        if(low >= high)
            return;

        //小于等于cutoff的时候,交给插入排序
        if(high - low <= cutoff) {
            SortFactory.createInsertionSort().perform(dest,low,high);
            return;
        }

        int mid = low + ((high - low) >>> 1);
        perform(dest,src,low,mid);
        perform(dest,src,mid + 1,high);

        //考虑局部有序 src[mid] <= src[mid+1]
        if(lessThanOrEqual(src[mid],src[mid+1])) {
            System.arraycopy(src,low,dest,low,high - low + 1);
        }

        //src[low .. mid] + src[mid+1 .. high] -> dest[low .. high]
        merge(src,dest,low,mid,high);
    }

    private <T> void merge(Comparable<T>[] src,Comparable<T>[] dest,int low,int mid,int high) {

        for(int i = low,v = low,w = mid + 1; i <= high; i++) {
            if(w > high || v <= mid && lessThanOrEqual(src[v],src[w])) {
                dest[i] = src[v++];
            }else {
                dest[i] = src[w++];
            }
        }
    }

数据太多,递归太深 ->栈溢出?加大Xss?
数据太多,数组太长 -> OOM?加大Xmx?

耐心不足,没跑出来.而且要将这么大的文件读入内存,在堆中维护这么大个数据量,还有内排中不断的拷贝,对栈和堆都是很大的压力,不具备通用性。


sort命令来跑

sort -n bigdata -o bigdata.sorted
  • 1

跑了多久呢?24分钟.

为什么这么慢?

粗略的看下我们的资源:
1. 内存
jvm-heap/stack,native-heap/stack,page-cache,block-buffer
2. 外存
swap + 磁盘

数据量很大,函数调用很多,系统调用很多,内核/用户缓冲区拷贝很多,脏页回写很多,io-wait很高,io很繁忙,堆栈数据不断交换至swap,线程切换很多,每个环节的锁也很多.

总之,内存吃紧,问磁盘要空间,脏数据持久化过多导致cache频繁失效,引发大量回写,回写线程高,导致cpu大量时间用于上下文切换,一切,都很糟糕,所以24分钟不细看了,无法忍受.


位图法

    private BitSet bits;

    public void perform(
            String largeFileName,
            int total,
            String destLargeFileName,
            Castor<Integer> castor,
            int readerBufferSize,
            int writerBufferSize,
            boolean asc) throws IOException {

        System.out.println("BitmapSort Started.");
        long start = System.currentTimeMillis();
        bits = new BitSet(total);
        InputPart<Integer> largeIn = PartFactory.createCharBufferedInputPart(largeFileName, readerBufferSize);
        OutputPart<Integer> largeOut = PartFactory.createCharBufferedOutputPart(destLargeFileName, writerBufferSize);
        largeOut.delete();

        Integer data;
        int off = 0;
        try {
            while (true) {
                data = largeIn.read();
                if (data == null)
                    break;
                int v = data;
                set(v);
                off++;
            }
            largeIn.close();
            int size = bits.size();
            System.out.println(String.format("lines : %d ,bits : %d", off, size));

            if(asc) {
                for (int i = 0; i < size; i++) {
                    if (get(i)) {
                        largeOut.write(i);
                    }
                }
            }else {
                for (int i = size - 1; i >= 0; i--) {
                    if (get(i)) {
                        largeOut.write(i);
                    }
                }
            }

            largeOut.close();
            long stop = System.currentTimeMillis();
            long elapsed = stop - start;
            System.out.println(String.format("BitmapSort Completed.elapsed : %dms",elapsed));
        }finally {
            largeIn.close();
            largeOut.close();
        }
    }

    private void set(int i) {
        bits.set(i);
    }

    private boolean get(int v) {
        return bits.get(v);
    }

nice!跑了190秒,3分来钟.
以核心内存4663M/32大小的空间跑出这么个结果,而且大量时间在用于I/O,不错.

问题是,如果这个时候突然内存条坏了1、2根,或者只有极少的内存空间怎么搞?


外部排序


该外部排序上场了.
外部排序干嘛的?

  1. 内存极少的情况下,利用分治策略,利用外存保存中间结果,再用多路归并来排序;
  2. map-reduce的嫡系.

这里写图片描述
这里写图片描述

1.分

内存中维护一个极小的核心缓冲区memBuffer,将大文件bigdata按行读入,搜集到memBuffer满或者大文件读完时,对memBuffer中的数据调用内排进行排序,排序后将有序结果写入磁盘文件bigdata.xxx.part.sorted.
循环利用memBuffer直到大文件处理完毕,得到n个有序的磁盘文件:

这里写图片描述

2.合

现在有了n个有序的小文件,怎么合并成1个有序的大文件?
把所有小文件读入内存,然后内排?
(⊙o⊙)…
no!

利用如下原理进行归并排序:
这里写图片描述
我们举个简单的例子:

文件1:3,6,9
文件2:2,4,8
文件3:1,5,7

第一回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:1,排在文件3的第1行
那么,这3个文件中的最小值是:min(1,2,3) = 1
也就是说,最终大文件的当前最小值,是文件1、2、3的当前最小值的最小值,绕么?
上面拿出了最小值1,写入大文件.

第二回合:
文件1的最小值:3 , 排在文件1的第1行
文件2的最小值:2,排在文件2的第1行
文件3的最小值:5,排在文件3的第2行
那么,这3个文件中的最小值是:min(5,2,3) = 2
将2写入大文件.

也就是说,最小值属于哪个文件,那么就从哪个文件当中取下一行数据.(因为小文件内部有序,下一行数据代表了它当前的最小值)

最终的时间,跑了771秒,13分钟左右.

less bigdata.sorted.text
...
9999966
9999967
9999968
9999969
9999970
9999971
9999972
9999973
9999974
9999975
9999976
9999977
9999978
...
分享到:
评论

相关推荐

    Java 5亿整数大文件怎么排序

    在本文中,我们将讨论如何对5亿整数大文件进行排序。这个问题的解决方案对大家的学习或者工作具有一定的参考学习价值。 首先,让我们来了解问题的背景。我们有一个大小4663M的大文件,包含5亿个随机整数,每行一个...

    面试 大数据 算法解析

    1.提取出某日访问百度次数最多的那个IP ...4.在2.5亿个整数中找出不重复的整数 5.腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中? ......

    针对常见的BAT公司中的大数据面试和笔试问题,首先解决思路,并使用python来实现.zip

    例如对5亿个整数进行排序,并输出到文件中。有5亿个ip,查找出现次数最多的ip等等,这些问题的共同特点是数据量增大,并且稳定的读入内存再处理行不通,或者即使内存足够大,采取暴力的方法行不通。针对常见的BAT...

    大数据的一些面试题.pdf

    例如,若要在2.5亿个整数中找出不重复的整数数量,可以将所有整数分为2^8个区域,利用bitmap进行存储。对于中位数问题,可以先将数据划分为2^16个区域,然后逐级确定中位数所在的区域。 二、数据库索引 数据库索引...

    世界500强面试题.pdf

    1.5.7. 输入一个表示整数的字符串,把该字符串转换成整数并输出.............. 118 1.5.8. 给出一个数列,找出其中最长的单调递减(或递增)子序列..............121 1.5.9. 四对括号可以有多少种匹配排列方式........

    常见算法笔试或面试题

    问题:给你 a、b 两个文件,各存放 50 亿条 url,每条 url 各占用 64 字节,内存限制是 4G,让你找出 a、b 文件共同的 url。 方法:使用 hash 表。使用 a 中元素创建 hash 表,hash 控制在适当规模。在hash 中查找 ...

    冲刺BAT练习题

    6. **100亿个整数,内存足够,如何找到中位数?内存不足,如何找到中位数?** - **内存足够**: - 可以使用排序算法(如快速排序)后直接获取中位数。 - **内存不足**: - 使用外部排序技术,如合并排序。 - ...

    淮安中欣国际实验学校五年级数学上册期末检测题精选.doc

    1295330000人保留整数后约为13亿人。 2. **百分数的理解**: - 110052个百分之一意味着将110052除以100,即1100.52。 3. **数据分析**: - 对于公交车站台上车和下车人数的统计,可以通过比较正负数的绝对值来...

    2021-2022计算机二级等级考试试题及答案No.12000.docx

    - **解释**:直接插入排序适用于部分有序的数据集合,因为它的基本思想是在一个已经排好序的序列中找到合适的位置插入新元素。对于接近有序的数据,插入排序的效率很高,因为它只需要移动少量元素就能完成排序。 ##...

Global site tag (gtag.js) - Google Analytics