`

海量数据处理 - 10亿个数中找出最大的10000个数(top K问题)

阅读更多
前两天面试3面学长问我的这个问题(想说TEG的3个面试学长都是好和蔼,希望能完成最后一面,各方面原因造成我无比想去鹅场的心已经按捺不住了),这个问题还是建立最小堆比较好一些。
        先拿10000个数建堆,然后一次添加剩余元素,如果大于堆顶的数(10000中最小的),将这个数替换堆顶,并调整结构使之仍然是一个最小堆,这样,遍历完后,堆中的10000个数就是所需的最大的10000个。建堆时间复杂度是O(mlogm),算法的时间复杂度为O(nmlogm)(n为10亿,m为10000)。
        优化的方法:可以把所有10亿个数据分组存放,比如分别放在1000个文件中。这样处理就可以分别在每个文件的10^6个数据中找出最大的10000个数,合并到一起在再找出最终的结果。
        以上就是面试时简单提到的内容,下面整理一下这方面的问题:
top K问题
        在大规模数据处理中,经常会遇到的一类问题:在海量数据中找出出现频率最好的前k个数,或者从海量数据中找出最大的前k个数,这类问题通常被称为top K问题。例如,在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载最高的前10首歌等。
        针对top K类问题,通常比较好的方案是分治+Trie树/hash+小顶堆(就是上面提到的最小堆),即先将数据集按照Hash方法分解成多个小数据集,然后使用Trie树活着Hash统计每个小数据集中的query词频,之后用小顶堆求出每个数据集中出现频率最高的前K个数,最后在所有top K中求出最终的top K。
eg:有1亿个浮点数,如果找出期中最大的10000个?
        最容易想到的方法是将数据全部排序,然后在排序后的集合中进行查找,最快的排序算法的时间复杂度一般为O(nlogn),如快速排序。但是在32位的机器上,每个float类型占4个字节,1亿个浮点数就要占用400MB的存储空间,对于一些可用内存小于400M的计算机而言,很显然是不能一次将全部数据读入内存进行排序的。其实即使内存能够满足要求(我机器内存都是8GB),该方法也并不高效,因为题目的目的是寻找出最大的10000个数即可,而排序却是将所有的元素都排序了,做了很多的无用功。
        第二种方法为局部淘汰法,该方法与排序方法类似,用一个容器保存前10000个数,然后将剩余的所有数字——与容器内的最小数字相比,如果所有后续的元素都比容器内的10000个数还小,那么容器内这个10000个数就是最大10000个数。如果某一后续元素比容器内最小数字大,则删掉容器内最小元素,并将该元素插入容器,最后遍历完这1亿个数,得到的结果容器中保存的数即为最终结果了。此时的时间复杂度为O(n+m^2),其中m为容器的大小,即10000。
        第三种方法是分治法,将1亿个数据分成100份,每份100万个数据,找到每份数据中最大的10000个,最后在剩下的100*10000个数据里面找出最大的10000个。如果100万数据选择足够理想,那么可以过滤掉1亿数据里面99%的数据。100万个数据里面查找最大的10000个数据的方法如下:用快速排序的方法,将数据分为2堆,如果大的那堆个数N大于10000个,继续对大堆快速排序一次分成2堆,如果大的那堆个数N大于10000个,继续对大堆快速排序一次分成2堆,如果大堆个数N小于10000个,就在小的那堆里面快速排序一次,找第10000-n大的数字;递归以上过程,就可以找到第1w大的数。参考上面的找出第1w大数字,就可以类似的方法找到前10000大数字了。此种方法需要每次的内存空间为10^6*4=4MB,一共需要101次这样的比较。
        第四种方法是Hash法。如果这1亿个书里面有很多重复的数,先通过Hash法,把这1亿个数字去重复,这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间,然后通过分治法或最小堆法查找最大的10000个数。
        第五种方法采用最小堆。首先读入前10000个数来创建大小为10000的最小堆,建堆的时间复杂度为O(mlogm)(m为数组的大小即为10000),然后遍历后续的数字,并于堆顶(最小)数字进行比较。如果比最小的数小,则继续读取后续数字;如果比堆顶数字大,则替换堆顶元素并重新调整堆为最小堆。整个过程直至1亿个数全部遍历完为止。然后按照中序遍历的方式输出当前堆中的所有10000个数字。该算法的时间复杂度为O(nmlogm),空间复杂度是10000(常数)。
实际运行:
        实际上,最优的解决方案应该是最符合实际设计需求的方案,在时间应用中,可能有足够大的内存,那么直接将数据扔到内存中一次性处理即可,也可能机器有多个核,这样可以采用多线程处理整个数据集。
       下面针对不容的应用场景,分析了适合相应应用场景的解决方案。
(1)单机+单核+足够大内存
        如果需要查找10亿个查询次(每个占8B)中出现频率最高的10个,考虑到每个查询词占8B,则10亿个查询次所需的内存大约是10^9 * 8B=8GB内存。如果有这么大内存,直接在内存中对查询次进行排序,顺序遍历找出10个出现频率最大的即可。这种方法简单快速,使用。然后,也可以先用HashMap求出每个词出现的频率,然后求出频率最大的10个词。
(2)单机+多核+足够大内存
        这时可以直接在内存总使用Hash方法将数据划分成n个partition,每个partition交给一个线程处理,线程的处理逻辑同(1)类似,最后一个线程将结果归并。
        该方法存在一个瓶颈会明显影响效率,即数据倾斜。每个线程的处理速度可能不同,快的线程需要等待慢的线程,最终的处理速度取决于慢的线程。而针对此问题,解决的方法是,将数据划分成c×n个partition(c>1),每个线程处理完当前partition后主动取下一个partition继续处理,知道所有数据处理完毕,最后由一个线程进行归并。
(3)单机+单核+受限内存
        这种情况下,需要将原数据文件切割成一个一个小文件,如次啊用hash(x)%M,将原文件中的数据切割成M小文件,如果小文件仍大于内存大小,继续采用Hash的方法对数据文件进行分割,知道每个小文件小于内存大小,这样每个文件可放到内存中处理。采用(1)的方法依次处理每个小文件。
(4)多机+受限内存
        这种情况,为了合理利用多台机器的资源,可将数据分发到多台机器上,每台机器采用(3)中的策略解决本地的数据。可采用hash+socket方法进行数据分发。

        从实际应用的角度考虑,(1)(2)(3)(4)方案并不可行,因为在大规模数据处理环境下,作业效率并不是首要考虑的问题,算法的扩展性和容错性才是首要考虑的。算法应该具有良好的扩展性,以便数据量进一步加大(随着业务的发展,数据量加大是必然的)时,在不修改算法框架的前提下,可达到近似的线性比;算法应该具有容错性,即当前某个文件处理失败后,能自动将其交给另外一个线程继续处理,而不是从头开始处理。

        top K问题很适合采用MapReduce框架解决,用户只需编写一个Map函数和两个Reduce 函数,然后提交到Hadoop(采用Mapchain和Reducechain)上即可解决该问题。具体而言,就是首先根据数据值或者把数据hash(MD5)后的值按照范围划分到不同的机器上,最好可以让数据划分后一次读入内存,这样不同的机器负责处理不同的数值范围,实际上就是Map。得到结果后,各个机器只需拿出各自出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是Reduce过程。对于Map函数,采用Hash算法,将Hash值相同的数据交给同一个Reduce task;对于第一个Reduce函数,采用HashMap统计出每个词出现的频率,对于第二个Reduce 函数,统计所有Reduce task,输出数据中的top K即可。

        直接将数据均分到不同的机器上进行处理是无法得到正确的结果的。因为一个数据可能被均分到不同的机器上,而另一个则可能完全聚集到一个机器上,同时还可能存在具有相同数目的数据。

以下是一些经常被提及的该类问题。
(1)有10000000个记录,这些查询串的重复度比较高,如果除去重复后,不超过3000000个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。请统计最热门的10个查询串,要求使用的内存不能超过1GB。

(2)有10个文件,每个文件1GB,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。按照query的频度排序。

(3)有一个1GB大小的文件,里面的每一行是一个词,词的大小不超过16个字节,内存限制大小是1MB。返回频数最高的100个词。

(4)提取某日访问网站次数最多的那个IP。

(5)10亿个整数找出重复次数最多的100个整数。

(6)搜索的输入信息是一个字符串,统计300万条输入信息中最热门的前10条,每次输入的一个字符串为不超过255B,内存使用只有1GB。

(7)有1000万个身份证号以及他们对应的数据,身份证号可能重复,找出出现次数最多的身份证号。

重复问题
        在海量数据中查找出重复出现的元素或者去除重复出现的元素也是常考的问题。针对此类问题,一般可以通过位图法实现。例如,已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

        本题最好的解决方法是通过使用位图法来实现。8位整数可以表示的最大十进制数值为99999999。如果每个数字对应于位图中一个bit位,那么存储8位整数大约需要99MB。因为1B=8bit,所以99Mbit折合成内存为99/8=12.375MB的内存,即可以只用12.375MB的内存表示所有的8位数电话号码的内容。


该文章转载自:http://blog.csdn.net/zyq522376829/article/details/47686867
分享到:
评论

相关推荐

    javascript从一亿个数中找出最大的100个 或者n个

    从一亿个数中找出最大的100个 或者n个 用了个堆从一亿个数中找出最大的100个 或者n个 用了个堆

    一种海量分布式数据Top-k查询算法.pdf

    ***-k查询算法定义:从大量数据中找出最符合某种条件的前k个元素,适用于搜索引擎、网络监控、证券分析等领域。 2. 分布式系统下的数据处理挑战:数据分布不均会导致查询效率低下,需要算法优化。 3. ECHT算法特点...

    海量数据处理-hive数据仓库

    海量数据处理-hive数据仓库 很好的讲解的大数据海量数据处理的数据仓库模型建设

    海量数据查找数据问题

    本篇文章将详细探讨如何解决"海量数据查找数据问题",并着重讨论如何在海量数据中寻找中位数以及查找特定的数。 首先,我们来关注如何在海量数据中找到中位数。中位数是一组数据的代表值,它能够反映出数据的整体...

    海量数据处理:十道面试题与十个海量数据处理方法总结

    - 在Top-K问题中非常有用,可以高效地找到前K个最大或最小的元素。 4. **Trie树/前缀树**: - 一种树形数据结构,特别适合于字符串的搜索和排序。 - 可以有效地统计词频或查询串的出现次数。 5. **外部排序**: ...

    海量数据处理-Hive数据仓库

    海量数据处理-Hive数据仓库是HADOOP方面介绍HIVE的资料,总结的东西是日常用的。

    大数据量海量数据处理.pdf

    - **Top-K问题**:即找出数据集中出现频率最高或数值最大的前K个元素,常见的解决方案包括基于堆的算法、Reservoir Sampling等。 - **分布式处理**:对于跨多台机器的数据集,采用分布式计算框架如Hadoop或Spark,...

    海量数据处理方法

    海量数据处理的面试题中,通常会出现以下几个方面的问题: 1. 海量数据处理的定义和特点 2. 海量数据处理的方法和策略 3. set/map/multiset/multimap 等数据结构的应用 4. 海量数据处理中的分布式处理和并行计算 5....

    十道海量数据处理面试题

    例如,对于访问日志数据提取IP的问题,可以采用哈希(Hash)方法将数据分散到1024个小文件中,每个文件分别统计IP出现频率,最后合并结果找出频率最高的IP。 其次,需要掌握如哈希表、堆(Heap)、trie树等数据结构...

    海量数据处理-Hadoop生态系统和成功案例

    虽然没有给出具体细节,但从名称判断这应该是一个利用Hadoop处理大规模数据的应用案例,可能涉及到移动通信领域的数据分析和优化。 ##### 4. 暴风影音 暴风影音每天处理大量的用户数据,包括活跃用户数量、日志...

    常见的海量数据处理方法

    本文介绍了几种处理海量数据的有效方法,包括分片存储与去重、使用布隆过滤器、MapReduce框架的应用、统计特定字段、TOP-K问题、精确去重以及高效统计等。这些方法不仅有助于优化存储空间和计算资源,还能大大提高...

    海量数据topk问题1

    在处理海量数据时,TopK问题是一个常见的挑战,特别是在机器学习和数据分析中。它涉及到找出数据集中出现频率最高的前K个元素或者数值最大的前K个元素。这个问题在大数据场景下尤为棘手,因为直接一次性加载所有数据...

    海量数据处理的初探--亿级数据的离线计算--LevelDB简单封装

    本文将探讨如何利用Google的LevelDB库处理亿级数据的离线计算,尤其是对于每天接近10GB,涉及2亿用户的大型数据集。LevelDB是一个轻量级、高性能的键值对存储系统,适用于本地磁盘存储,特别适合进行批量数据处理...

    海量数据处理 海量数据处理

    海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行...

    海量数据处理策略.pdf

    本文为海量数据处理策略提供了一个详细的指南,涵盖了海量数据的特点、难点、处理策略等方面的内容,能够帮助读者更好地理解和处理海量数据。 在实际工作中,海量数据处理策略的应用非常广泛,如社交网络、电子商务...

    海量数据如何做分页处理-方案公布

    以下是从标题“海量数据如何做分页处理-方案公布”、描述以及部分内容中提炼出的关键知识点: #### 1. 常见的大数据分页处理方案 - **全量数据加载至内存**: 这是最直接但消耗资源最多的策略,适用于数据量较小的...

    海量数据处理总结(大量数据处理)

    - **案例三:整数去重**:在2.5亿个整数中找出不重复的整数个数,当内存不足以容纳所有数据时,可以采用Bit-Map或优化后的Bloom Filter来标记元素的出现情况,进而统计不重复整数的数量。 ### 结论 海量数据处理...

Global site tag (gtag.js) - Google Analytics