`
xiaoming2xiaohong
  • 浏览: 41237 次
社区版块
存档分类
最新评论

Melkman凸包算法的Java实现

阅读更多

    坐标对象:

?

public class Point{
	private float x;	    //X坐标
	private float y;	    //Y坐标
	private double arCos;	//与P0点的角度
	
	public float getX() {
		return x;
	}
	public void setX(float x) {
		this.x = x;
	}
	public float getY() {
		return y;
	}
	public void setY(float y) {
		this.y = y;
	}
	public double getArCos() {
		return arCos;
	}
	public void setArCos(double arCos) {
		this.arCos = arCos;
	}
}

?算法与测试:

package Melkman;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

/**
 * Melkman求凸包算法
 * @author zl
 */
public class Melkman {
	private Point[] pointArray;//坐标数组
	private final int N;//数据个数
	private int D[]; // 数组索引

	public Melkman(List<Point> pList) {
		this.pointArray = new Point[pList.size()];
		N = pList.size();
		int k = 0;
		for (Point p : pList) {
			pointArray[k++] = p;
		}
		D = new int[2 * N];
	}

	/**
	 * 求凸包点
	 * 
	 * @return 所求凸包点
	 */
	public Point[] getTubaoPoint() {
		// 获得最小的Y,作为P0点
		float minY = pointArray[0].getY();
		int j = 0;
		for (int i = 1; i < N; i++) {
			if (pointArray[i].getY() < minY) {
				minY = pointArray[i].getY();
				j = i;
			}
		}
		swap(0, j);

		// 计算除第一顶点外的其余顶点到第一点的线段与x轴的夹角
		for (int i = 1; i < N; i++) {
			pointArray[i].setArCos(angle(i));
		}

		quickSort(1, N - 1); // 根据所得到的角度进行快速排序

		int bot = N - 1;
		int top = N;
		D[top++] = 0;
		D[top++] = 1;
		int i;

		for (i = 2; i < N; i++) {// 寻找第三个点 要保证3个点不共线!!
			if (isLeft(pointArray[D[top - 2]], pointArray[D[top - 1]],
					pointArray[i]) != 0)
				break;
			D[top - 1] = i; // 共线就更换顶点
		}

		D[bot--] = i;
		D[top++] = i; // i是第三个点 不共线!!

		int t;
		if (isLeft(pointArray[D[N]], pointArray[D[N + 1]], pointArray[D[N + 2]]) < 0) {
			// 此时队列中有3个点,要保证3个点a,b,c是成逆时针的,不是就调换ab
			t = D[N];
			D[N] = D[N + 1];
			D[N + 1] = t;
		}

		for (i++; i < N; i++) {
			// 如果成立就是i在凸包内,跳过 //top=n+3 bot=n-2
			if (isLeft(pointArray[D[top - 2]], pointArray[D[top - 1]],
					pointArray[i]) > 0
					&amp;&amp; isLeft(pointArray[D[bot + 1]], pointArray[D[bot + 2]],
							pointArray[i]) > 0) {
				continue;
			}
			
			//非左转 则退栈
			while (isLeft(pointArray[D[top - 2]], pointArray[D[top - 1]],
					pointArray[i]) <= 0) {
				top--;
			}
			D[top++] = i;
			
			//反向表非左转 则退栈
			while (isLeft(pointArray[D[bot + 1]], pointArray[D[bot + 2]],
					pointArray[i]) <= 0) {
				bot++;
			}
			D[bot--] = i;
		}

		// 凸包构造完成,D数组里bot+1至top-1内就是凸包的序列(头尾是同一点)
		Point[] resultPoints = new Point[top - bot - 1];
		int index = 0;
		for (i = bot + 1; i < top - 1; i++) {
			System.out.println(pointArray[D[i]].getX() + ","
					+ pointArray[D[i]].getY());
			resultPoints[index++] = pointArray[D[i]];
		}
		return resultPoints;
	}

	/**
	 * 判断ba相对ao是不是左转
	 * 
	 * @return 大于0则左转
	 */
	private float isLeft(Point o, Point a, Point b) {
		float aoX = a.getX() - o.getX();
		float aoY = a.getY() - o.getY();
		float baX = b.getX() - a.getX();
		float baY = b.getY() - a.getY();

		return aoX * baY - aoY * baX;
	}

	/**
	 * 实现数组交换
	 * 
	 * @param i
	 * @param j
	 */
	private void swap(int i, int j) {
		Point tempPoint = new Point();
		tempPoint.setX(pointArray[j].getX());
		tempPoint.setY(pointArray[j].getY());
		tempPoint.setArCos(pointArray[j].getArCos());

		pointArray[j].setX(pointArray[i].getX());
		pointArray[j].setY(pointArray[i].getY());
		pointArray[j].setArCos(pointArray[i].getArCos());

		pointArray[i].setX(tempPoint.getX());
		pointArray[i].setY(tempPoint.getY());
		pointArray[i].setArCos(tempPoint.getArCos());
	}

	/**
	 * 快速排序
	 * 
	 * @param top
	 * @param bot
	 */
	private void quickSort(int top, int bot) {
		int pos;
		if (top < bot) {
			pos = loc(top, bot);
			quickSort(top, pos - 1);
			quickSort(pos + 1, bot);
		}
	}

	/**
	 * 移动起点,左侧为小,右侧为大
	 * 
	 * @param top
	 * @param bot
	 * @return 移动后的位置
	 */
	private int loc(int top, int bot) {
		double x = pointArray[top].getArCos();
		int j, k;
		j = top + 1;
		k = bot;
		while (true) {
			while (j < bot &amp;&amp; pointArray[j].getArCos() < x)
				j++;
			while (k > top &amp;&amp; pointArray[k].getArCos() > x)
				k--;
			if (j >= k)
				break;
			swap(j, k);
		}
		swap(top, k);
		return k;
	}

	/**
	 * 角度计算
	 * 
	 * @param i 指针
	 * @return
	 */
	private double angle(int i) {
		double j, k, m, h;
		j = pointArray[i].getX() - pointArray[0].getX();
		k = pointArray[i].getY() - pointArray[0].getY();
		m = Math.sqrt(j * j + k * k); // 得到顶点i 到第一顶点的线段长度
		if (k < 0)
			j = (-1) * Math.abs(j);
		h = Math.acos(j / m); // 得到该线段与x轴的角度
		return h;
	}

	public static void main(String args[]) {
		// File file = new File("G:/yl.txt");
		File file = new File("G:/data.txt");
		BufferedReader br = null;
		try {
			br = new BufferedReader(new FileReader(file));
		} catch (FileNotFoundException e) {
			e.printStackTrace();
		}
		List<Point> pointList = new ArrayList<Point>();
		String str = null;
		try {
			str = br.readLine();
		} catch (IOException e) {
			e.printStackTrace();
		}
		while (str != null) {
			String[] s = str.split("\\t", 2);
			float x = Float.parseFloat(s[0].trim());
			float y = Float.parseFloat(s[1].trim());
			Point p = new Point();
			p.setX(x);
			p.setY(y);
			// System.out.println("文件数据:" + x + ", " + y);
			pointList.add(p);
			try {
				str = br.readLine();
			} catch (IOException e) {
				e.printStackTrace();
			}
		}

		System.out.println("数据个数:" + pointList.size());

		Melkman m = new Melkman(pointList);
		m.getTubaoPoint();
	}
}

?
 
0
0
分享到:
评论

相关推荐

    Melkman凸包算法及Java实现

    // 实现算法步骤... } } ``` **相关文档资料** 在学习和实现Melkman凸包算法时,相关文档资料是非常宝贵的资源。它们通常包括算法的详细解释、伪代码、示例以及可能的优化技巧。你可以查找学术论文、专业书籍...

    凸包melkman算法 cpp STL deque

    poj1113 melkman算法求凸包, 使用STL

    凸包melkman算法cpp

    凸包melkman算法cpp实现,通过poj1113题测试

    基于C语言的凸包算法实现

    本程序是基于C语言的凸包算法(Graham)实现,能够直接编译运行,计算凸包的点为随机生成。该程序为控制台应用程序,输出结果有凸包顶点坐标、以及一个50*50的矩阵,其中0表示空白点,1表示随机生成的点集,2表示...

    NX8_hull.zip

    本项目“NX8_hull.zip”涉及到的是利用C#实现的一个特定算法,即Melkman算法,该算法主要用于计算二维几何对象的凸包(Convex Hull)。在计算机图形学、地理信息系统和机器学习等领域,凸包问题是非常重要的基础问题...

    Melkman's Convex Hull Algorithm

    Melkman的凸包算法是一种高效计算简单多边形链(或简单多边形)的凸包的线性时间算法。该算法由Arieh D. Melkman提出,并基于前人工作的基础上发展而来。在计算机图形学、几何建模等领域有着广泛的应用。 #### 基本...

    chans:Chan 的凸包算法互动教程

    课程涵盖礼品包装(Jarvis March)、Graham Scan、Quickhull、Monotone Chain、Melkman、Sklansky、Kirkpatrick & Seidel(终极版),最后是 Chan 的算法。 Chan 算法(以其发明者 Timothy M. Chan 命名)是一种...

    计算几何算法实现(C语言实现)

    10. **凸包MelkMan算法的实现**:专门针对动态更新的点集寻找凸包的一种高效算法。 11. **凸多边形的直径**:即凸多边形中最远两点间的距离,可以通过扫描线算法求解。 12. **求凸多边形的重心**:可以通过计算所有...

    Melkmans-Algorithm-Visualized:对迷人算法的动态探索

    Melkman 的算法可视化找到简单多边形凸包的最佳方法的动态可视化。 要在本地运行,请执行npm install && browserify melkman.js -o bundle.js && wget http://d3js.org/d3.v3.js并打开您喜欢的Web服务器。贡献如果你...

    计算几何算法实现[第一版]

    11. **凸包MelkMan算法的实现**: - 特别适用于动态凸包问题。 12. **凸多边形的直径**: - 指凸多边形中最远两点之间的距离。 13. **求凸多边形的重心**: - 计算多边形顶点坐标的平均值作为重心位置。 以上是对...

    北大acm计算几何专题详解

    凸包算法是计算几何中的一个重要工具,它的作用是找到一组点的最小凸包,从而简化问题的复杂度,常见的算法有Graham扫描法和Melkman算法,这些都需要处理三点共线等异常情况。 计算几何在ACM竞赛中的应用不仅限于纯...

    计算几何_邓东.ppt

    3. **凸包算法**:凸包是包围一个几何对象的最小凸集,常用算法有Graham扫描算法和Melkman算法,用于降低复杂度。 4. **线段相交**:判断两条线段是否相交,需要处理各种边界和特殊情况。 5. **多边形的相交**:在三...

Global site tag (gtag.js) - Google Analytics