`
q272156430
  • 浏览: 275876 次
  • 性别: Icon_minigender_1
  • 来自: 成都
社区版块
存档分类
最新评论

Java管道流

    博客分类:
  • java
阅读更多

    即使在图形用户界面占统治地位的今天,控制台输出仍旧在Java程序中占有重要地位。控制台不仅是Java程序默认的堆栈跟踪和错误信息输出窗口,而且还是一种实用的调试工具(特别是对习惯于使用println()的人来说)。然而,控制台窗口有着许多局限。例如在Windows 9x平台上,DOS控制台只能容纳50行输出。如果Java程序一次性向控制台输出大量内容,要查看这些内容就很困难了。

对于使用javaw这个启动程序的开发者来说,控制台窗口尤其宝贵。因为用javaw启动java程序时,根本不会有控制台窗口出现。如果程序遇到了问题并抛出异常,根本无法查看Java运行时环境写入到System.out或System.err的调用堆栈跟踪信息。为了捕获堆栈信息,一些人采取了用 try/catch()块封装main()的方式,但这种方式不一定总是有效,在Java运行时的某些时刻,一些描述性错误信息会在抛出异常之前被写入 System.out和System.err;除非能够监测这两个控制台流,否则这些信息就无法看到。

因此,有些时候检查Java运行时环境(或第三方程序)写入到控制台流的数据并采取合适的操作是十分必要的。本文讨论的主题之一就是创建这样一个输入流,从这个输入流中可以读入以前写入Java控制台流(或任何其他程序的输出流)的数据。我们可以想象写入到输出流的数据立即以输入的形式“回流”到了 Java程序。

本文的目标是设计一个基于Swing的文本窗口显示控制台输出。在此期间,我们还将讨论一些和Java管道流(PipedInputStream和 PipedOutputStream)有关的重要注意事项。图一显示了用来截取和显示控制台文本输出的Java程序,用户界面的核心是一个 JTextArea。最后,我们还要创建一个能够捕获和显示其他程序(可以是非Java的程序)控制台输出的简单程序。

 

     图一:多线程的控制台输出截取程序
 

一、Java管道流

要在文本框中显示控制台输出,我们必须用某种方法“截取”控制台流。换句话说,我们要有一种高效地读取写入到System.out和System.err 所有内容的方法。如果你熟悉Java的管道流PipedInputStream和PipedOutputStream,就会相信我们已经拥有最有效的工具。

写入到PipedOutputStream输出流的数据可以从对应的PipedInputStream输入流读取。Java的管道流极大地方便了我们截取控制台输出。Listing 1显示了一种非常简单的截取控制台输出方案。

【Listing 1:用管道流截取控制台输出】
PipedInputStream pipedIS = new PipedInputStream();
PipedOutputStream pipedOS = new PipedOutputStream();
try {
   pipedOS.connect(pipedIS);
}
catch(IOException e) {
   System.err.println("连接失败");
   System.exit(1);
}
PrintStream ps = new PrintStream(pipedOS);
System.setOut(ps);
System.setErr(ps);

可以看到,这里的代码极其简单。我们只是建立了一个PipedInputStream,把它设置为所有写入控制台流的数据的最终目的地。所有写入到控制台流的数据都被转到PipedOutputStream,这样,从相应的PipedInputStream读取就可以迅速地截获所有写入控制台流的数据。接下来的事情似乎只剩下在Swing JTextArea中显示从pipedIS流读取的数据,得到一个能够在文本框中显示控制台输出的程序。遗憾的是,在使用Java管道流时有一些重要的注意事项。只有认真对待所有这些注意事项才能保证Listing 1的代码稳定地运行。下面我们来看第一个注意事项。

1.1 注意事项一
PipedInputStream运用的是一个1024字节固定大小的循环缓冲区。写入PipedOutputStream的数据实际上保存到对应的 PipedInputStream的内部缓冲区。从PipedInputStream执行读操作时,读取的数据实际上来自这个内部缓冲区。如果对应的 PipedInputStream输入缓冲区已满,任何企图写入PipedOutputStream的线程都将被阻塞。而且这个写操作线程将一直阻塞,直至出现读取PipedInputStream的操作从缓冲区删除数据。

这意味着,向PipedOutputStream写数据的线程不应该是负责从对应PipedInputStream读取数据的唯一线程。从图二可以清楚地看出这里的问题所在:假设线程t是负责从PipedInputStream读取数据的唯一线程;另外,假定t企图在一次对 PipedOutputStream的write()方法的调用中向对应的PipedOutputStream写入2000字节的数据。在t线程阻塞之前,它最多能够写入1024字节的数据(PipedInputStream内部缓冲区的大小)。然而,一旦t被阻塞,读取 PipedInputStream的操作就再也不会出现,因为t是唯一读取PipedInputStream的线程。这样,t线程已经完全被阻塞,同时,所有其他试图向PipedOutputStream写入数据的线程也将遇到同样的情形。



图二:管道流工作过程

这并不意味着在一次write()调用中不能写入多于1024字节的数据。但应当保证,在写入数据的同时,有另一个线程从PipedInputStream读取数据。

Listing 2示范了这个问题。这个程序用一个线程交替地读取PipedInputStream和写入PipedOutputStream。每次调用write()向 PipedInputStream的缓冲区写入20字节,每次调用read()只从缓冲区读取并删除10个字节。内部缓冲区最终会被写满,导致写操作阻塞。由于我们用同一个线程执行读、写操作,一旦写操作被阻塞,就不能再从PipedInputStream读取数据。

【Listing 2:用同一个线程执行读/写操作导致线程阻塞】
import java.io.*;
public class Listing2 {
    static PipedInputStream pipedIS = new PipedInputStream();
    static PipedOutputStream pipedOS = 
        new PipedOutputStream();
    public static void main(String[] a){
        try {
            pipedIS.connect(pipedOS);
        }
        catch(IOException e) {
            System.err.println("连接失败");
                System.exit(1);
            }
        byte[] inArray    = new byte[10];
        byte[] outArray = new byte[20];
        int bytesRead = 0;
        try {
            // 向pipedOS发送20字节数据
            pipedOS.write(outArray, 0, 20);
            System.out.println("     已发送20字节...");
           // 在每一次循环迭代中,读入10字节
           // 发送20字节
            bytesRead = pipedIS.read(inArray, 0, 10);
            int i=0;
            while(bytesRead != -1) {
                pipedOS.write(outArray, 0, 20);
                System.out.println("     已发送20字节..."+i);
                i++;
                bytesRead = pipedIS.read(inArray, 0, 10);
            }
        }
        catch(IOException e) {
                System.err.println("读取pipedIS时出现错误: " + e);
                System.exit(1);
        }
    } // main()
}

只要把读/写操作分开到不同的线程,Listing 2的问题就可以轻松地解决。Listing 3是Listing 2经过修改后的版本,它在一个单独的线程中执行写入PipedOutputStream的操作(和读取线程不同的线程)。为证明一次写入的数据可以超过 1024字节,我们让写操作线程每次调用PipedOutputStream的write()方法时写入2000字节。那么,在 startWriterThread()方法中创建的线程是否会阻塞呢?按照Java运行时线程调度机制,它当然会阻塞。写操作在阻塞之前实际上最多只能写入1024字节的有效载荷(即PipedInputStream缓冲区的大小)。但这并不会成为问题,因为主线程(main)很快就会从 PipedInputStream的循环缓冲区读取数据,空出缓冲区空间。最终,写操作线程会从上一次中止的地方重新开始,写入2000字节有效载荷中的剩余部分。

【Listing 3:把读/写操作分开到不同的线程】
import java.io.*;
public class Listing3 {
    static PipedInputStream pipedIS =
        new PipedInputStream();
    static PipedOutputStream pipedOS =
        new PipedOutputStream();
    public static void main(String[] args) {
        try {
            pipedIS.connect(pipedOS);
        }
        catch(IOException e) {
            System.err.println("连接失败");
            System.exit(1);
        }
        byte[] inArray = new byte[10];
        int bytesRead = 0;
        // 启动写操作线程
        startWriterThread();
        try {
            bytesRead = pipedIS.read(inArray, 0, 10);
            while(bytesRead != -1) {
                System.out.println("已经读取" +
                    bytesRead + "字节...");
                bytesRead = pipedIS.read(inArray, 0, 10);
            }
        }
        catch(IOException e) {
            System.err.println("读取输入错误.");
            System.exit(1);
        }
    } // main()
    // 创建一个独立的线程
    // 执行写入PipedOutputStream的操作
    private static void startWriterThread() {
        new Thread(new Runnable() {
            public void run() {
                byte[] outArray = new byte[2000];
                while(true) { // 无终止条件的循环
                    try {
                        // 在该线程阻塞之前,有最多1024字节的数据被写入
                        pipedOS.write(outArray, 0, 2000);
                    }
                    catch(IOException e) {
                        System.err.println("写操作错误");
                        System.exit(1);
                    }
                    System.out.println("     已经发送2000字节...");
                }
            }
        }).start();
    } // startWriterThread()
} // Listing3

也许我们不能说这个问题是Java管道流设计上的缺陷,但在应用管道流时,它是一个必须密切注意的问题。下面我们来看看第二个更重要(更危险的)问题。

1.2 注意事项二
从PipedInputStream读取数据时,如果符合下面三个条件,就会出现IOException异常:

  1. 试图从PipedInputStream读取数据,
  2. PipedInputStream的缓冲区为“空”(即不存在可读取的数据),
  3. 最后一个向PipedOutputStream写数据的线程不再活动(通过Thread.isAlive()检测)。

这是一个很微妙的时刻,同时也是一个极其重要的时刻。假定有一个线程w向PipedOutputStream写入数据;另一个线程r从对应的 PipedInputStream读取数据。下面一系列的事件将导致r线程在试图读取PipedInputStream时遇到IOException异常:

  1. w向PipedOutputStream写入数据。
  2. w结束(w.isAlive()返回false)。
  3. r从PipedInputStream读取w写入的数据,清空PipedInputStream的缓冲区。
  4. r试图再次从PipedInputStream读取数据。这时PipedInputStream的缓冲区已经为空,而且w已经结束,从而导致在读操作执行时出现IOException异常。

构造一个程序示范这个问题并不困难,只需从Listing 3的startWriterThread()方法中,删除while(true)条件。这个改动阻止了执行写操作的方法循环执行,使得执行写操作的方法在一次写入操作之后就结束运行。如前所述,此时主线程试图读取PipedInputStraem时,就会遇到一个IOException异常。

这是一种比较少见的情况,而且不存在直接修正它的方法。请不要通过从管道流派生子类的方法修正该问题――在这里使用继承是完全不合适的。而且,如果Sun以后改变了管道流的实现方法,现在所作的修改将不再有效。

最后一个问题和第二个问题很相似,不同之处在于,它在读线程(而不是写线程)结束时产生IOException异常。

1.3 注意事项三
如果一个写操作在PipedOutputStream上执行,同时最近从对应PipedInputStream读取的线程已经不再活动(通过 Thread.isAlive()检测),则写操作将抛出一个IOException异常。假定有两个线程w和r,w向 PipedOutputStream写入数据,而r则从对应的PipedInputStream读取。下面一系列的事件将导致w线程在试图写入 PipedOutputStream时遇到IOException异常:

  1. 写操作线程w已经创建,但r线程还不存在。
  2. w向PipedOutputStream写入数据。
  3. 读线程r被创建,并从PipedInputStream读取数据。
  4. r线程结束。
  5. w企图向PipedOutputStream写入数据,发现r已经结束,抛出IOException异常。

实际上,这个问题不象第二个问题那样棘手。和多个读线程/单个写线程的情况相比,也许在应用中有一个读线程(作为响应请求的服务器)和多个写线程(发出请求)的情况更为常见。

1.4 解决问题
要防止管道流前两个局限所带来的问题,方法之一是用一个ByteArrayOutputStream作为代理或替代PipedOutputStream。 Listing 4显示了一个LoopedStreams类,它用一个ByteArrayOutputStream提供和Java管道流类似的功能,但不会出现死锁和 IOException异常。这个类的内部仍旧使用管道流,但隔离了本文介绍的前两个问题。我们先来看看这个类的公用方法(参见图3)。构造函数很简单,它连接管道流,然后调用startByteArrayReaderThread()方法(稍后再讨论该方法)。getOutputStream()方法返回一个OutputStream(具体地说,是一个ByteArrayOutputStream)用以替代PipedOutputStream。写入该 OutputStream的数据最终将在getInputStream()方法返回的流中作为输入出现。和使用PipedOutputStream的情形不同,向ByteArrayOutputStream写入数据的线程的激活、写数据、结束不会带来负面效果。



图三:ByteArrayOutputStream原理

【Listing 4:防止管道流应用中出现的常见问题】
import java.io.*;
public class LoopedStreams {
    private PipedOutputStream pipedOS = 
        new PipedOutputStream();
    private boolean keepRunning = true;
    private ByteArrayOutputStream byteArrayOS =
        new ByteArrayOutputStream() {
        public void close() {
            keepRunning = false;
            try {
                super.close();
                pipedOS.close();
            }
            catch(IOException e) {
                // 记录错误或其他处理
                // 为简单计,此处我们直接结束
                System.exit(1);
            }
        }
    };
    private PipedInputStream pipedIS = new PipedInputStream() {
        public void close() {
            keepRunning = false;
            try    {
                super.close();
            }
            catch(IOException e) {
                // 记录错误或其他处理
                // 为简单计,此处我们直接结束
                System.exit(1);
            }
        }
    };
    public LoopedStreams() throws IOException {
        pipedOS.connect(pipedIS);
        startByteArrayReaderThread();
    } // LoopedStreams()
    public InputStream getInputStream() {
        return pipedIS;
    } // getInputStream()
    public OutputStream getOutputStream() {
        return byteArrayOS;
    } // getOutputStream()
    private void startByteArrayReaderThread() {
        new Thread(new Runnable() {
            public void run() {
                while(keepRunning) {
                    // 检查流里面的字节数
                    if(byteArrayOS.size() > 0) {
                        byte[] buffer = null;
                        synchronized(byteArrayOS) {
                            buffer = byteArrayOS.toByteArray();
                            byteArrayOS.reset(); // 清除缓冲区
                        }
                        try {
                            // 把提取到的数据发送给PipedOutputStream
                            pipedOS.write(buffer, 0, buffer.length);
                        }
                        catch(IOException e) {
                            // 记录错误或其他处理
                            // 为简单计,此处我们直接结束
                            System.exit(1);
                        }
                    }
                    else // 没有数据可用,线程进入睡眠状态
                        try {
                            // 每隔1秒查看ByteArrayOutputStream检查新数据
                            Thread.sleep(1000);
                        }
                        catch(InterruptedException e) {}
                    }
             }
        }).start();
    } // startByteArrayReaderThread()
} // LoopedStreams

startByteArrayReaderThread()方法是整个类真正的关键所在。这个方法的目标很简单,就是创建一个定期地检查 ByteArrayOutputStream缓冲区的线程。缓冲区中找到的所有数据都被提取到一个byte数组,然后写入到 PipedOutputStream。由于PipedOutputStream对应的PipedInputStream由getInputStream ()返回,从该输入流读取数据的线程都将读取到原先发送给ByteArrayOutputStream的数据。前面提到,LoopedStreams类解决了管道流存在的前二个问题,我们来看看这是如何实现的。

ByteArrayOutputStream具有根据需要扩展其内部缓冲区的能力。由于存在“完全缓冲”,线程向getOutputStream()返回的流写入数据时不会被阻塞。因而,第一个问题不会再给我们带来麻烦。另外还要顺便说一句,ByteArrayOutputStream的缓冲区永远不会缩减。例如,假设在能够提取数据之前,有一块500 K的数据被写入到流,缓冲区将永远保持至少500 K的容量。如果这个类有一个方法能够在数据被提取之后修正缓冲区的大小,它就会更完善。

第二个问题得以解决的原因在于,实际上任何时候只有一个线程向PipedOutputStream写入数据,这个线程就是由 startByteArrayReaderThread()创建的线程。由于这个线程完全由LoopedStreams类控制,我们不必担心它会产生 IOException异常。

LoopedStreams类还有一些细节值得提及。首先,我们可以看到byteArrayOS和pipedIS实际上分别是 ByteArrayOutputStream和PipedInputStream的派生类的实例,也即在它们的close()方法中加入了特殊的行为。如果一个LoopedStreams对象的用户关闭了输入或输出流,在startByteArrayReaderThread()中创建的线程必须关闭。覆盖后的close()方法把keepRunning标记设置成false以关闭线程。另外,请注意startByteArrayReaderThread ()中的同步块。要确保在toByteArray()调用和reset()调用之间ByteArrayOutputStream缓冲区不被写入流的线程修改,这是必不可少的。由于ByteArrayOutputStream的write()方法的所有版本都在该流上同步,我们保证了 ByteArrayOutputStream的内部缓冲区不被意外地修改。

注意LoopedStreams类并不涉及管道流的第三个问题。该类的getInputStream()方法返回PipedInputStream。如果一个线程从该流读取,一段时间后终止,下次数据从ByteArrayOutputStream缓冲区传输到PipedOutputStream时就会出现 IOException异常。





回页首

二、捕获Java控制台输出

Listing 5的ConsoleTextArea类扩展Swing JTextArea捕获控制台输出。不要对这个类有这么多代码感到惊讶,必须指出的是,ConsoleTextArea类有超过50%的代码用来进行测试。

【Listing 5:截获Java控制台输出】
import java.io.*;
import java.util.*;
import javax.swing.*;
import javax.swing.text.*;
public class ConsoleTextArea extends JTextArea {
    public ConsoleTextArea(InputStream[] inStreams) {
        for(int i = 0; i < inStreams.length; ++i)
            startConsoleReaderThread(inStreams[i]);
    } // ConsoleTextArea()
    public ConsoleTextArea() throws IOException {
        final LoopedStreams ls = new LoopedStreams();
        // 重定向System.out和System.err
        PrintStream ps = new PrintStream(ls.getOutputStream());
        System.setOut(ps);
        System.setErr(ps);
        startConsoleReaderThread(ls.getInputStream());
    } // ConsoleTextArea()
    private void startConsoleReaderThread(
        InputStream inStream) {
        final BufferedReader br =
            new BufferedReader(new InputStreamReader(inStream));
        new Thread(new Runnable() {
            public void run() {
                StringBuffer sb = new StringBuffer();
                try {
                    String s;
                    Document doc = getDocument();
                    while((s = br.readLine()) != null) {
                        boolean caretAtEnd = false;
                        caretAtEnd = getCaretPosition() == doc.getLength() ?
                            true : false;
                        sb.setLength(0);
                        append(sb.append(s).append('\n').toString());
                        if(caretAtEnd)
                            setCaretPosition(doc.getLength());
                    }
                }
                catch(IOException e) {
                    JOptionPane.showMessageDialog(null,
                        "从BufferedReader读取错误:" + e);
                    System.exit(1);
                }
            }
        }).start();
    } // startConsoleReaderThread()
    // 该类剩余部分的功能是进行测试
    public static void main(String[] args) {
        JFrame f = new JFrame("ConsoleTextArea测试");
        ConsoleTextArea consoleTextArea = null;
        try {
            consoleTextArea = new ConsoleTextArea();
        }
        catch(IOException e) {
            System.err.println(
                "不能创建LoopedStreams:" + e);
            System.exit(1);
        }
        consoleTextArea.setFont(java.awt.Font.decode("monospaced"));
        f.getContentPane().add(new JScrollPane(consoleTextArea),
            java.awt.BorderLayout.CENTER);
        f.setBounds(50, 50, 300, 300);
        f.setVisible(true);
        f.addWindowListener(new java.awt.event.WindowAdapter() {
            public void windowClosing(
                java.awt.event.WindowEvent evt) {
                System.exit(0);
            }
        });
        // 启动几个写操作线程向
        // System.out和System.err输出
        startWriterTestThread(
            "写操作线程 #1", System.err, 920, 50);
        startWriterTestThread(
            "写操作线程 #2", System.out, 500, 50);
        startWriterTestThread(
            "写操作线程 #3", System.out, 200, 50);
        startWriterTestThread(
            "写操作线程 #4", System.out, 1000, 50);
        startWriterTestThread(
            "写操作线程 #5", System.err, 850,    50);
    } // main()
    private static void startWriterTestThread(
        final String name, final PrintStream ps, 
        final int delay, final int count) {
        new Thread(new Runnable() {
            public void run() {
                for(int i = 1; i <= count; ++i) {
                    ps.println("***" + name + ", hello !, i=" + i);
                    try {
                        Thread.sleep(delay);
                    }
                    catch(InterruptedException e) {}
                }
            }
        }).start();
    } // startWriterTestThread()
} // ConsoleTextArea

main()方法创建了一个JFrame,JFrame包含一个ConsoleTextArea的实例。这些代码并没有什么特别之处。Frame显示出来之后,main()方法启动一系列的写操作线程,写操作线程向控制台流输出大量信息。ConsoleTextArea捕获并显示这些信息,如图一所示。

ConsoleTextArea提供了两个构造函数。没有参数的构造函数用来捕获和显示所有写入到控制台流的数据,有一个InputStream[]参数的构造函数转发所有从各个数组元素读取的数据到JTextArea。稍后将有一个例子显示这个构造函数的用处。首先我们来看看没有参数的 ConsoleTextArea构造函数。这个函数首先创建一个LoopedStreams对象;然后请求Java运行时环境把控制台输出转发到 LoopedStreams提供的OutputStream;最后,构造函数调用startConsoleReaderThread(),创建一个不断地把文本行追加到JTextArea的线程。注意,把文本追加到JTextArea之后,程序小心地保证了插入点的正确位置。

一般来说,Swing部件的更新不应该在AWT事件分派线程(AWT Event Dispatch Thread,AEDT)之外进行。对于本例来说,这意味着所有把文本追加到JTextArea的操作应该在AEDT中进行,而不是在 startConsoleReaderThread()方法创建的线程中进行。然而,事实上在Swing中向JTextArea追加文本是一个线程安全的操作。读取一行文本之后,我们只需调用JText.append()就可以把文本追加到JTextArea的末尾。

 

分享到:
评论

相关推荐

    java管道流

    ### Java管道流详解 在Java编程中,管道流(Piped Stream)是一种特殊的流类型,主要用于线程间的通信。管道流主要包括两个类:`PipedInputStream`和`PipedOutputStream`。通过这两个类,可以实现数据从一个线程到...

    JAVA管道流.pdf

    Java管道流是Java标准库提供的一种机制,允许数据在不同线程之间进行高效的数据传输。在Java开发中,尤其是在处理控制台输出时,管道流能帮助我们捕获和处理System.out和System.err的输出,这对于调试、日志记录或者...

    重难点之Java管道流.pdf

    Java管道流是Java I/O系统中的一个重要特性,它允许线程之间进行直接的数据通信,而无需借助共享数据空间。在Unix/Linux操作系统中,管道是一种基本的进程间通信机制,Java中的管道流则提供了类似的功能,使得一个...

    JAVA_管道流

    Java管道流(PipedInputStream和PipedOutputStream)是Java I/O流的一部分,主要用于在不同的线程之间传递数据。它们提供了一种机制,使得一个线程可以写入数据,而另一个线程可以从管道读取这些数据,实现数据的...

    Java管道流.pdf

    Java中的管道流是一种用于线程间通信的机制,它的核心思想是将一个线程的输出作为另一个线程的输入,从而实现数据的传递。在Java I/O系统中,管道流分为字节流和字符流两种类型,我们主要讨论的是字节流。 1. 管道...

    Java管道流实现线程间通信过程解析

    Java管道流实现线程间通信过程解析 Java管道流是一种特殊的流,用于在不同线程间直接传送数据。它提供了一种高效、可靠的线程间通信方式,能够帮助开发者更好地实现线程间的数据交换。在Java语言中,管道流是通过...

    java基础--文件流管道.docx

    本文将深入探讨Java中的文件流管道以及传统的文件拷贝方法。 首先,我们要了解什么是文件流管道。在Java NIO(New IO)框架下,文件流管道(Pipe)是一种用于在两个线程之间传递数据的机制,它允许一个线程写入数据...

    管道流说明和例子,例子很详细的

    - Java管道流提供了一种灵活且强大的机制来截获控制台输出,这对于开发过程中的调试以及生产环境下的错误处理都非常有用。 - 使用管道流时需要注意其特性,如阻塞性质和缓冲区限制等,以避免潜在的问题。 - 合理设计...

    java进程间管道通信1

    Java进程间的管道通信是一种进程间通信(IPC,Inter-Process Communication)的方式,它允许不同的Java进程之间通过共享的管道进行数据传输。虽然Java标准库不直接支持创建管道文件,但可以借助于操作系统提供的功能...

    用Java多线程写管道过滤器

    使用Java多线程实现管道过滤器,本文档写了六个线程,五个管道,内容很简单,如果想要复杂功能请手动添加。

    Java IO流文档

    ### Java IO流详解 #### 一、Input和Output Stream概览 在Java中,输入输出流(简称IO流)是用来处理文件读写的核心技术之一。它主要包括两类:以字节为导向的流和以字符为导向的流。 ##### 1.1 以字节为导向的流...

    Javaio流思维导图

    管道流PipedInputStream和PipedOutputStream用于线程间通信,它们创建了一个数据通道,使得一个线程可以向管道写入数据,另一个线程可以从管道读取。 还有FileChannel和Selector等NIO(非阻塞I/O)组件,它们在高...

    管道流PipedStream应用举例

    针对java中的管道流的应用的解析,包括PipedInputStream和PipedOutputStream。

    Java开发技术大全(500个源代码).

    MyPipedIO.java 管道流示例 MySequenceIn.java 顺序输入流示例 ObjectFileTest.java 序列化对象示例 ReadAndWrite.java 读入和写出数据 ReadAndWriteFile.java 读入数据写出到文件 Student.java 定义一个用来...

    JavaIO流详细总结

    这些流允许在多个线程间创建管道,实现数据的同步传输。 12. 复用流(FilterInputStream和FilterOutputStream): 这些抽象类是所有过滤流的基类,过滤流可以在原始流的基础上增加额外的功能,如压缩、加密等。 ...

    linux下C和java通过管道通信

    在Linux操作系统中,C语言和Java程序之间的通信可以通过多种方式实现,其中管道(Pipe)是一种常见且基础的进程间通信(IPC, Inter-Process Communication)机制。本篇将详细讲解如何利用管道实现在Linux下的C和Java...

    java零基础自学 之 JavaIO流处理

    管道流(PipedReader、PipedWriter、PipedInputStream和PipedOutputStream)允许在不同线程间进行数据通信,提供了一种内部的连接机制。 8. **数据流** DataInputStream和DataOutputStream可以读写基本数据类型,...

    java io流源代码

    6.管道流(Piped): - **PipedInputStream** 和 **PipedOutputStream** 用于线程间的通信,一个线程写入数据,另一个线程读取数据。 7. 缓冲流(Buffered): - **BufferedInputStream** 和 **...

    《JAVA_IO流学习总结》

    三、管道流和缓冲流 - PipedInputStream和PipedOutputStream允许在不同线程间传递数据,形成管道。 - 缓冲流(BufferedInputStream/BufferedReader等)在内部维护一个缓冲区,提高读写效率,减少对底层操作系统的...

    Java字节流与字符流的介绍.pdf

    Java 字节流与字符流的介绍 Java 中的流操作可以分为两种:字节流和字符流。字节流是指以 byte 为单位进行读写操作的流,而字符流是指以 char 为单位进行读写操作的流。 字节流的介绍 字节流的所有读操作都继承自...

Global site tag (gtag.js) - Google Analytics