1. history
Prior to the 1980’s laboratories controlled their workflow manually using paperwork systems. They basically used these to control samples, testing and collate results. As the number of samples requiring test and demands for quicker results increased, so the systems bagan to fail. Initially, individual and regulatory demands increased so more and more laboratories bagan to use bigger and bigger programs to control administration. Automation of some lab testing began to appear but software lagged behind.
Commercial versions of some lab systems began to appear in the market. Although it was basic to compare to those today, they became popular with lab staff because the removed much of tedium of the work.. Over the years the software improved and with the introduction of the Windows operating system the applications became more sophisticated. LIMS systems appeared in the 1980’s. Most of the early systems used mini-computers and a hierarchical database structure and a proprietary database configuration. They had big disadvantages:
Costly, user unfriendliness, inability to move data out of LIMS. Next came PC’s with the same database structure and proprietary database configurations.
By the early nineties Windows was becoming more and more popular. However, few LIMS vendors could convert their complicated applications form DOS or UNIX over to Microsoft Windows environment. The majority of today’s LIMS systems use (ISAM) databases such as Microsoft Access for smaller labs whilst larger systems are typically based UNIX on and use (SQL) such as Oracle and Microsoft SQL server.
2 LIMS Development
Firstly, what is a LIMS ?
Laboratory Information Management Systems (LIMS) are information management systems designed specifically for the analytical laboratory. This includes research and development(R&D) labs, in-process testing labs, quality assurance (QA) labs, and more. Typically, LIMS connect the analytical instruments in the lab to one or more workstations or personal computers (PC). These instruments such as chromatographs are used to collect data. An instrument interface such as an integrator is used to forward the data from the chromatograph to the PC, where the data is organized into meaningful information. This information is further sorted and organized into various report formats based upon the type of report required.
Most LIMS products allow the laboratory to ; register work requests; print analytical worksheets; monitor and communicate sample/technique backlogs; schedule work; acquire and store analytical data; monitor the quality of all analytical work; approve analytical data to client release; print and store analytical reports and invoices; protect the security of all data; track and locate samples in storage; track and communicate all quality control in the laboratory; provide laboratory management with production and financial statistics and with client information, e.g., names , address, sales figures, etc. An appropriately designed and installed LIMS can quickly bring accuracy and accessibility to the flow of samples and data in any laboratory. The real value of a LIMS is the ability to maximize sample throughput and minimize labor costs.
Laboratory throughput is improved in a number of different ways. The most obvious gain in productivity occurs through the ability for data entry via on-line instruments. Also, there will be a significant decrease in data entry errors. Finally, the up-to-date sample in-flow data available from a typical LIMS allows laboratory supervisors and bench personnel to better schedule analytical work, minimize “downtime” and maximize batch size. Some other effects are that there are better visible quality control checks and centralized data. The ability to monitor, track and communicate data and quality control information gives the laboratory the tools to improve methods and work practices. The end result is that people in the laboratory are able to process more samples per hour worked.
LIMS development is continuing unabated. Demands for more specialized functions have driven LIMS into areas of genetic research, bioinformatics and MES integration. LIMS vendors are developing customized modules for large corporate customers. Modules such as Customer Relationship Manager, HPLC Data Management, Chemical Inventory and Equipment Calibration Management are all readily available.
The integration into large applications such as E.R.P. and M.E.S. is now commonplace. Other LIMS applications allow external laboratory customers to access the system via the internet to view results in real-time, thereby effectively contracting out the need for their own laboratory.
3 Design and Implementation
The design stage prior to acquiring a LIMS involves the review and analysis of available software/hardware packages as well as the definition and documentation of your own laboratory’s requirements. The possible error here could be that bench personnel are excludes form the process. To resolve this problem it is recommended that you have frequent meetings with the personnel in your lab that will use the system.
Some laboratories might go into a LIMS program believing that future requirements for bench level supervision will be reduced or eliminated. It has been recognized by many that LIMS is simply a tool and as such cannot manage the laboratory or take the place of personnel supervision. A LIMS will effectively provide current, reliable and complete operational data. The easy access to accurate data allow management to significantly enhance the quality and speed of decision-making. Decision-making becomes based more on fact rather than instincts.
The average software professional does not usually have the background to effectively interpret a laboratory’s requirements. This communication problem can manifest itself in LIMS systems that do not easily fit into laboratory operations. Often the laboratory must significantly alter procedures and work flow in order to conform to the LIMS. This requirement for wholesale change significantly complicates LIMS installations and might have poor acceptance and commitment support personnel to the project.
A similar problem often occurs in large organizations with dedicated Information System (IS) and departments. Significant conflict and problems can arise when IS personnel recommend the most up-to-date hardware or software architecture regardless of the functionality, fit or overall cost to the laboratory . The end result of this process is that the laboratory must undergo significant change in order to conform to product purchased. In the extreme case laboratories can wind-up having to increase overhead, e.g., more data handling, in order to use LIMS systems that have been designed not for the laboratory but for the accounting or production departments.
The keys to success are flexibility, adaptability, ease of evolution and support, and most importantly overall system speed. The speed issue is very critical, as bench personnel will not use something that is slow or awkward. If the system saves bench personnel time they will quickly “buy into” the project and aggressively move the process forward.
4 Installation Phase
The goal of any LIMS installation must be to acquire a system that will make the jobs of bench personnel easier and thus increase the efficiency of organization. In order to be successful, the LIMS system must be accepted and welcomed by the bench personnel. Often the first contact front-line personnel have with the new system is during installation, long after all decisions have been made. This situation often leads to significant software and LIMS configuration problems that require major software re-writes, hardware retro fits and/or disruptive organizational changes. In addition, analytical and support staff are more likely to resist the new system if they have had little input into its design and operational characteristics.
The installation phase of a LIMS program is critical to the overall success of the project. It is during LIMS installation that personnel must be taught how to use the product and where the software designers get their first view of how the LIMS will fit into the function in the laboratory. The installation phase of a LIMS project can take from weeks to months depending on the size of the laboratory and complexity of the project.
5 Conclusion
The time for a laboratory to move from manual tracking systems to a LIMS has never been better. Today’s LIMS include affordable and advanced database functionality that was not available in the past. These functions include the ability to seamlessly integrate laboratory information with common software such as the Professional Microsoft Office Suite (Word, Excel, Access, and PowerPoint) and other applications such as WordPerfect, and QuatroPro. The emergence of non-proprietary database systems allows end-users to customize reports, analyze and present their data in a number of ways. A successfully implemented LIMS will increases productivity of the laboratory improve accuracy of the data , decrease the number of mundane tasks performed and increase the overall efficiency of the laboratory.
LIMS的历史、发展、应用和实施应用
1. 历史
二十世纪八十年代,实验室工作全部由手工操作完成。工作人员手工管理样品、分析并比较结果。当数量众多的样品需要分析检测、并要求快速得出结果时,手工检测系统就显得无能为力了。于是一些专业人员开始编写小型软件程序管理日常实验室工作。随着商业和法规需求的增长,越来越多的实验室开始使用更加大型的程序管理工作,实验室进入自动化时期,但这时的软件水平还比较滞后。
当时,市场上出现了以商业为目的的实验室应用系统,尽管与如今的软件相比它们还处于初级水平,但得到了广泛应用,因为它们能为技术人员减轻大量繁重的工作。数年后软件水平提高了,而且随着WINDOWS操作系统的引入,应用软件的功能变得更加强大。LIMS最早出现在二十世纪八十年代,大多数早期的系统使用微机和具有优先级数据库配置的分级数据库结构。然而它们存在着严重的弊病,即价格昂贵、使用不便,无法从LIMS中直接读取数据。这以后便出现了带有相同数据库结构和优先级数据库配置的个人电脑。九十年代初期,WINDOWS的使用越来越广泛,但是LIMS供应商无法把复杂的应用从DOS或UNIX转成WINDOWS操作环境。 目前大多数的LIMS系统使用(ISAM)数据库,如小型实验室使用Microsoft Access,大型系统基本上是基于UNIX和SQL,如Oracle和Microsoft SQL Server。
2.LIMS的发展
首先,什么是LIMS?LIMS是专为研发实验室、中试实验室、质保(QA)实验室等分析型实验室设计的信息管理系统。通常情况下,LIMS把一个或更多的工作站或个人电脑与实验室中的分析仪器连接起来。这些仪器如色谱仪可以采集数据,仪器接口可把数据从色谱仪传到电脑里,然后由电脑处理数据,得出重要信息。这些信息可根据报告的要求被进一步分类、整理成不同的报表。
大多数LIMS产品可帮助实验室进行样品登记,指定样品所需分析,打印分析报表,监控化验截止日期,安排分析检测,获取并储存分析数据,监控分析质量,为客户送交的产品审核分析数据,打印并储存分析报告和发票,保证数据安全,跟踪样品,给样品分配库位,跟踪并交换实验室的质控信息,进行生产和财务统计,成本核算,管理客户信息,如名字、地址、销售数据等等。一个设计、安装优良的LIMS能迅速、准确、方便地处理实验室中的样品和数据。LIMS的真正价值在于能最大限度地处理样品量并降低劳动成本。
提高实验室生产力的各种方法中最有效的是通过在线仪器输入数据,这样可以明显降低数据输入的错误率。总之,最新的数据可以使实验室的监督和技术人员更好地安排分析工作,最大限度地缩短停工期,提高批量。另外,LIMS还可以加强对质控检查和数据处理的透明度。监控、跟踪和交换数据及质控信息的能力可以改进实验室分析方法、提高工作能力,其最终效果就是技术人员能在每单位时间内处理更多的样品。
LIMS自身在不断发展着,对LIMS功能的特殊需求促使LIMS也介入了基因研究、生物信息工程和MES(制造执行系统)集成等领域。LIMS供应商正在为大型合作用户开发客户化模块,现已有客户关系管理、HPLC数据管理、化学库存和设备校验管理等模块。
LIMS与ERP和MES等大型应用的集成已司空见惯,另外,LIMS也允许外部实验室客户通过英特网访问该系统、实时浏览分析检测结果,从而有效地扩展了实验室的自身功能。
3. 设计和实施
在LIMS的设计阶段,厂家和软件供应商要对现有的软、硬件及自身实验室的需求文档进行分析评审。在这里容易疏忽的地方就是没有让实验室技术人员参与评审,因此建议经常与将要用到LIMS的技术人员开会讨论和沟通。
一些将要上LIMS的实验室认为将来会减少或取消对技术人员水平的监督工作。许多人认为LIMS只是个工具而已,无法管理实验室或代替监管人员的工作;而实际上LIMS能有效、及时地提供可靠而完整的操作数据。方便地读取正确的数 据可以显著提高管理者的决策质量和速度。(俗话说拿事实说话,所以)决策的形成更多地依赖事实而非本能感觉。
一般的专业软件人员通常对实验室的需求并不了解,这说明LIMS并非能轻而易举地与实验室的工作相匹配,实验室必须经常改变一些工作流程来适应LIMS。这种大规模变更会使LIMS的安装变得极为复杂,而且不易得到项目执行人员的认可。
类似的问题经常出现在拥有专业信息系统(IS)的大型组织和部门里。当IS人员推荐使用最新的硬件或软件时,如果忽视对其功能、适用性或整体成本的考虑,就容易出问题,甚至最终导致实验室必须重新改造来满足所采购的软件产品。只有在特殊情况下,为了使用不是为实验室而是为财务或生产部门设计的LIMS系统,实验室才会增加管理费用,如更多的数据处理。
优质软件关键要具有灵活性、适用性、可扩展性和良好的技术支持,而且最重要的是整体系统的运行速度。速度之所以至关重要是因为:实验室技术人员绝不会使用速度慢或难以应用的系统。如果软件系统能提高工作效率,技术人员会毫不犹豫地选择它以推进整个工作的进行。 LIMS的开发宗旨应该是:实现预期的功能而不影响系统运行速度。在充分发挥LIMS优势之前,实验室先要掌握LIMS的使用方法。为不影响程序的顺利运行,要经过一段磨合期,所以更多复杂的功能通常要推迟一或两年实现。这种方案延后实施的做法会让实验室人员在系统进入最后优化的关键阶段更多地参与进来。
4.安装
安装LIMS的目的是让它简化技术人员的工作,提高机构的效率。为了能成功地实施,LIMS系统先必须事先得到技术人员的认可和欢迎;而情况往往相反,即在安装阶段及所有决定做出之后,系统安装人员才与新系统环境下的一线人员进行首次接触。这种情况经常导致重要软件和LIMS出现设置问题,需要重新编写重要程序,重新安装硬件并/或进行机构改革。另外,实验室的分析和技术支持人员如果没有参与软件的功能和操作设计,就容易对新系统都产生抵触心理。
LIMS程序的安装阶段对整体项目的成功实施举足轻重。技术人员必须在安装阶段学会使用LIMS。 LIMS项目的安装周期可以从数周到数月,这取决于实验室的规模大小和项目的复杂程度。最近,中国政府把LIMS视为提高国内制造品质量和竞争力的主要手段之一。
5.结论
现在正是用LIMS替换手工操作系统的大好时机!如今,LIMS已具有先进的数据库功能,这在以前是无法比拟的。这些功能包括把实验室信息与普通软件如微软办公系统(Word, Excel, Access, PowerPoint)及其他应用,如WordPerfect, QuatroPro, 进行无缝连接。非优先级的数据库系统可以让最终用户自定义报表和分析,并用多种方法提交数据。成功实施的LIMS将提高实验室生产力,提高数据的准确性,减少一些无谓的劳动,从而提高整个实验室的工作效率。
Prior to the 1980’s laboratories controlled their workflow manually using paperwork systems. They basically used these to control samples, testing and collate results. As the number of samples requiring test and demands for quicker results increased, so the systems bagan to fail. Initially, individual and regulatory demands increased so more and more laboratories bagan to use bigger and bigger programs to control administration. Automation of some lab testing began to appear but software lagged behind.
Commercial versions of some lab systems began to appear in the market. Although it was basic to compare to those today, they became popular with lab staff because the removed much of tedium of the work.. Over the years the software improved and with the introduction of the Windows operating system the applications became more sophisticated. LIMS systems appeared in the 1980’s. Most of the early systems used mini-computers and a hierarchical database structure and a proprietary database configuration. They had big disadvantages:
Costly, user unfriendliness, inability to move data out of LIMS. Next came PC’s with the same database structure and proprietary database configurations.
By the early nineties Windows was becoming more and more popular. However, few LIMS vendors could convert their complicated applications form DOS or UNIX over to Microsoft Windows environment. The majority of today’s LIMS systems use (ISAM) databases such as Microsoft Access for smaller labs whilst larger systems are typically based UNIX on and use (SQL) such as Oracle and Microsoft SQL server.
2 LIMS Development
Firstly, what is a LIMS ?
Laboratory Information Management Systems (LIMS) are information management systems designed specifically for the analytical laboratory. This includes research and development(R&D) labs, in-process testing labs, quality assurance (QA) labs, and more. Typically, LIMS connect the analytical instruments in the lab to one or more workstations or personal computers (PC). These instruments such as chromatographs are used to collect data. An instrument interface such as an integrator is used to forward the data from the chromatograph to the PC, where the data is organized into meaningful information. This information is further sorted and organized into various report formats based upon the type of report required.
Most LIMS products allow the laboratory to ; register work requests; print analytical worksheets; monitor and communicate sample/technique backlogs; schedule work; acquire and store analytical data; monitor the quality of all analytical work; approve analytical data to client release; print and store analytical reports and invoices; protect the security of all data; track and locate samples in storage; track and communicate all quality control in the laboratory; provide laboratory management with production and financial statistics and with client information, e.g., names , address, sales figures, etc. An appropriately designed and installed LIMS can quickly bring accuracy and accessibility to the flow of samples and data in any laboratory. The real value of a LIMS is the ability to maximize sample throughput and minimize labor costs.
Laboratory throughput is improved in a number of different ways. The most obvious gain in productivity occurs through the ability for data entry via on-line instruments. Also, there will be a significant decrease in data entry errors. Finally, the up-to-date sample in-flow data available from a typical LIMS allows laboratory supervisors and bench personnel to better schedule analytical work, minimize “downtime” and maximize batch size. Some other effects are that there are better visible quality control checks and centralized data. The ability to monitor, track and communicate data and quality control information gives the laboratory the tools to improve methods and work practices. The end result is that people in the laboratory are able to process more samples per hour worked.
LIMS development is continuing unabated. Demands for more specialized functions have driven LIMS into areas of genetic research, bioinformatics and MES integration. LIMS vendors are developing customized modules for large corporate customers. Modules such as Customer Relationship Manager, HPLC Data Management, Chemical Inventory and Equipment Calibration Management are all readily available.
The integration into large applications such as E.R.P. and M.E.S. is now commonplace. Other LIMS applications allow external laboratory customers to access the system via the internet to view results in real-time, thereby effectively contracting out the need for their own laboratory.
3 Design and Implementation
The design stage prior to acquiring a LIMS involves the review and analysis of available software/hardware packages as well as the definition and documentation of your own laboratory’s requirements. The possible error here could be that bench personnel are excludes form the process. To resolve this problem it is recommended that you have frequent meetings with the personnel in your lab that will use the system.
Some laboratories might go into a LIMS program believing that future requirements for bench level supervision will be reduced or eliminated. It has been recognized by many that LIMS is simply a tool and as such cannot manage the laboratory or take the place of personnel supervision. A LIMS will effectively provide current, reliable and complete operational data. The easy access to accurate data allow management to significantly enhance the quality and speed of decision-making. Decision-making becomes based more on fact rather than instincts.
The average software professional does not usually have the background to effectively interpret a laboratory’s requirements. This communication problem can manifest itself in LIMS systems that do not easily fit into laboratory operations. Often the laboratory must significantly alter procedures and work flow in order to conform to the LIMS. This requirement for wholesale change significantly complicates LIMS installations and might have poor acceptance and commitment support personnel to the project.
A similar problem often occurs in large organizations with dedicated Information System (IS) and departments. Significant conflict and problems can arise when IS personnel recommend the most up-to-date hardware or software architecture regardless of the functionality, fit or overall cost to the laboratory . The end result of this process is that the laboratory must undergo significant change in order to conform to product purchased. In the extreme case laboratories can wind-up having to increase overhead, e.g., more data handling, in order to use LIMS systems that have been designed not for the laboratory but for the accounting or production departments.
The keys to success are flexibility, adaptability, ease of evolution and support, and most importantly overall system speed. The speed issue is very critical, as bench personnel will not use something that is slow or awkward. If the system saves bench personnel time they will quickly “buy into” the project and aggressively move the process forward.
4 Installation Phase
The goal of any LIMS installation must be to acquire a system that will make the jobs of bench personnel easier and thus increase the efficiency of organization. In order to be successful, the LIMS system must be accepted and welcomed by the bench personnel. Often the first contact front-line personnel have with the new system is during installation, long after all decisions have been made. This situation often leads to significant software and LIMS configuration problems that require major software re-writes, hardware retro fits and/or disruptive organizational changes. In addition, analytical and support staff are more likely to resist the new system if they have had little input into its design and operational characteristics.
The installation phase of a LIMS program is critical to the overall success of the project. It is during LIMS installation that personnel must be taught how to use the product and where the software designers get their first view of how the LIMS will fit into the function in the laboratory. The installation phase of a LIMS project can take from weeks to months depending on the size of the laboratory and complexity of the project.
5 Conclusion
The time for a laboratory to move from manual tracking systems to a LIMS has never been better. Today’s LIMS include affordable and advanced database functionality that was not available in the past. These functions include the ability to seamlessly integrate laboratory information with common software such as the Professional Microsoft Office Suite (Word, Excel, Access, and PowerPoint) and other applications such as WordPerfect, and QuatroPro. The emergence of non-proprietary database systems allows end-users to customize reports, analyze and present their data in a number of ways. A successfully implemented LIMS will increases productivity of the laboratory improve accuracy of the data , decrease the number of mundane tasks performed and increase the overall efficiency of the laboratory.
LIMS的历史、发展、应用和实施应用
1. 历史
二十世纪八十年代,实验室工作全部由手工操作完成。工作人员手工管理样品、分析并比较结果。当数量众多的样品需要分析检测、并要求快速得出结果时,手工检测系统就显得无能为力了。于是一些专业人员开始编写小型软件程序管理日常实验室工作。随着商业和法规需求的增长,越来越多的实验室开始使用更加大型的程序管理工作,实验室进入自动化时期,但这时的软件水平还比较滞后。
当时,市场上出现了以商业为目的的实验室应用系统,尽管与如今的软件相比它们还处于初级水平,但得到了广泛应用,因为它们能为技术人员减轻大量繁重的工作。数年后软件水平提高了,而且随着WINDOWS操作系统的引入,应用软件的功能变得更加强大。LIMS最早出现在二十世纪八十年代,大多数早期的系统使用微机和具有优先级数据库配置的分级数据库结构。然而它们存在着严重的弊病,即价格昂贵、使用不便,无法从LIMS中直接读取数据。这以后便出现了带有相同数据库结构和优先级数据库配置的个人电脑。九十年代初期,WINDOWS的使用越来越广泛,但是LIMS供应商无法把复杂的应用从DOS或UNIX转成WINDOWS操作环境。 目前大多数的LIMS系统使用(ISAM)数据库,如小型实验室使用Microsoft Access,大型系统基本上是基于UNIX和SQL,如Oracle和Microsoft SQL Server。
2.LIMS的发展
首先,什么是LIMS?LIMS是专为研发实验室、中试实验室、质保(QA)实验室等分析型实验室设计的信息管理系统。通常情况下,LIMS把一个或更多的工作站或个人电脑与实验室中的分析仪器连接起来。这些仪器如色谱仪可以采集数据,仪器接口可把数据从色谱仪传到电脑里,然后由电脑处理数据,得出重要信息。这些信息可根据报告的要求被进一步分类、整理成不同的报表。
大多数LIMS产品可帮助实验室进行样品登记,指定样品所需分析,打印分析报表,监控化验截止日期,安排分析检测,获取并储存分析数据,监控分析质量,为客户送交的产品审核分析数据,打印并储存分析报告和发票,保证数据安全,跟踪样品,给样品分配库位,跟踪并交换实验室的质控信息,进行生产和财务统计,成本核算,管理客户信息,如名字、地址、销售数据等等。一个设计、安装优良的LIMS能迅速、准确、方便地处理实验室中的样品和数据。LIMS的真正价值在于能最大限度地处理样品量并降低劳动成本。
提高实验室生产力的各种方法中最有效的是通过在线仪器输入数据,这样可以明显降低数据输入的错误率。总之,最新的数据可以使实验室的监督和技术人员更好地安排分析工作,最大限度地缩短停工期,提高批量。另外,LIMS还可以加强对质控检查和数据处理的透明度。监控、跟踪和交换数据及质控信息的能力可以改进实验室分析方法、提高工作能力,其最终效果就是技术人员能在每单位时间内处理更多的样品。
LIMS自身在不断发展着,对LIMS功能的特殊需求促使LIMS也介入了基因研究、生物信息工程和MES(制造执行系统)集成等领域。LIMS供应商正在为大型合作用户开发客户化模块,现已有客户关系管理、HPLC数据管理、化学库存和设备校验管理等模块。
LIMS与ERP和MES等大型应用的集成已司空见惯,另外,LIMS也允许外部实验室客户通过英特网访问该系统、实时浏览分析检测结果,从而有效地扩展了实验室的自身功能。
3. 设计和实施
在LIMS的设计阶段,厂家和软件供应商要对现有的软、硬件及自身实验室的需求文档进行分析评审。在这里容易疏忽的地方就是没有让实验室技术人员参与评审,因此建议经常与将要用到LIMS的技术人员开会讨论和沟通。
一些将要上LIMS的实验室认为将来会减少或取消对技术人员水平的监督工作。许多人认为LIMS只是个工具而已,无法管理实验室或代替监管人员的工作;而实际上LIMS能有效、及时地提供可靠而完整的操作数据。方便地读取正确的数 据可以显著提高管理者的决策质量和速度。(俗话说拿事实说话,所以)决策的形成更多地依赖事实而非本能感觉。
一般的专业软件人员通常对实验室的需求并不了解,这说明LIMS并非能轻而易举地与实验室的工作相匹配,实验室必须经常改变一些工作流程来适应LIMS。这种大规模变更会使LIMS的安装变得极为复杂,而且不易得到项目执行人员的认可。
类似的问题经常出现在拥有专业信息系统(IS)的大型组织和部门里。当IS人员推荐使用最新的硬件或软件时,如果忽视对其功能、适用性或整体成本的考虑,就容易出问题,甚至最终导致实验室必须重新改造来满足所采购的软件产品。只有在特殊情况下,为了使用不是为实验室而是为财务或生产部门设计的LIMS系统,实验室才会增加管理费用,如更多的数据处理。
优质软件关键要具有灵活性、适用性、可扩展性和良好的技术支持,而且最重要的是整体系统的运行速度。速度之所以至关重要是因为:实验室技术人员绝不会使用速度慢或难以应用的系统。如果软件系统能提高工作效率,技术人员会毫不犹豫地选择它以推进整个工作的进行。 LIMS的开发宗旨应该是:实现预期的功能而不影响系统运行速度。在充分发挥LIMS优势之前,实验室先要掌握LIMS的使用方法。为不影响程序的顺利运行,要经过一段磨合期,所以更多复杂的功能通常要推迟一或两年实现。这种方案延后实施的做法会让实验室人员在系统进入最后优化的关键阶段更多地参与进来。
4.安装
安装LIMS的目的是让它简化技术人员的工作,提高机构的效率。为了能成功地实施,LIMS系统先必须事先得到技术人员的认可和欢迎;而情况往往相反,即在安装阶段及所有决定做出之后,系统安装人员才与新系统环境下的一线人员进行首次接触。这种情况经常导致重要软件和LIMS出现设置问题,需要重新编写重要程序,重新安装硬件并/或进行机构改革。另外,实验室的分析和技术支持人员如果没有参与软件的功能和操作设计,就容易对新系统都产生抵触心理。
LIMS程序的安装阶段对整体项目的成功实施举足轻重。技术人员必须在安装阶段学会使用LIMS。 LIMS项目的安装周期可以从数周到数月,这取决于实验室的规模大小和项目的复杂程度。最近,中国政府把LIMS视为提高国内制造品质量和竞争力的主要手段之一。
5.结论
现在正是用LIMS替换手工操作系统的大好时机!如今,LIMS已具有先进的数据库功能,这在以前是无法比拟的。这些功能包括把实验室信息与普通软件如微软办公系统(Word, Excel, Access, PowerPoint)及其他应用,如WordPerfect, QuatroPro, 进行无缝连接。非优先级的数据库系统可以让最终用户自定义报表和分析,并用多种方法提交数据。成功实施的LIMS将提高实验室生产力,提高数据的准确性,减少一些无谓的劳动,从而提高整个实验室的工作效率。
- 外文翻译.rar (14.2 KB)
- 下载次数: 0
相关推荐
基于的手势识别系统可控制灯的亮_3
untitled2.zip
S7-1500和分布式外围系统ET200MP模块数据
anaconda配置pytorch环境
高校教室管理系统,主要的模块包括查看首页、个人中心、教师管理、学生管理、教室信息管理、教师申请管理、学生申请管理、课时表管理、教师取消预约管理、学生取消预约管理等功能。
半挂汽车列车横向稳定性控制研究:基于模糊PID与制动力矩分配的联合仿真分析在典型工况下的表现,半挂汽车列车在典型工况下的横向稳定性控制研究:基于模糊PID与制动力矩分配的联合仿真分析,半挂汽车列车4自由度6轴整车model,横向稳定性控制,在低附着系数路面,进行典型3个工况,角阶跃,双移线,方向盘转角。 采用算法:模糊PID,制动力矩分配,最优滑移率滑膜控制。 以上基于trucksim和simulink联合仿真,有对应 p-a-p-e-r参考 ,关键词: 1. 半挂汽车列车 2. 4自由度6轴整车model 3. 横向稳定性控制 4. 低附着系数路面 5. 典型工况(角阶跃、双移线、方向盘转角) 6. 模糊PID算法 7. 制动力矩分配 8. 最优滑移率滑膜控制 9. Trucksim和Simulink联合仿真 10. P-A-P-E-R参考; 用分号隔开上述关键词为:半挂汽车列车; 4自由度6轴整车model; 横向稳定性控制; 低附着系数路面; 典型工况; 模糊PID算法; 制动力矩分配; 最优滑移率滑膜控制; Trucksim和Simulink联合仿真; P-A-P-E-R参考
路径规划人工势场法及其改进算法Matlab代码实现,路径规划人工势场法及其改进算法Matlab代码实现,路径规划人工势场法以及改进人工势场法matlab代码,包含了 ,路径规划; 人工势场法; 改进人工势场法; MATLAB代码; 分隔词“;”。,基于Matlab的改进人工势场法路径规划算法研究
本文介绍了范德堡大学深脑刺激器(DBS)项目,该项目旨在开发和临床评估一个系统,以辅助从规划到编程的整个过程。DBS是一种高频刺激治疗,用于治疗运动障碍,如帕金森病。由于目标区域在现有成像技术中可见性差,因此DBS电极的植入和编程过程复杂且耗时。项目涉及使用计算机辅助手术技术,以及一个定制的微定位平台(StarFix),该平台允许在术前进行图像采集和目标规划,提高了手术的精确性和效率。此外,文章还讨论了系统架构和各个模块的功能,以及如何通过中央数据库和网络接口实现信息共享。
三菱FX3U步进电机FB块的应用:模块化程序实现电机换算,提高稳定性和移植性,三菱FX3U步进电机换算FB块:模块化编程实现电机控制的高效性与稳定性提升,三菱FX3U 步进电机算FB块 FB块的使用可以使程序模块化简单化,进而提高了程序的稳定性和可移植性。 此例中使用FB块,可以实现步进电机的算,已知距离求得脉冲数,已知速度可以求得频率。 程序中包含有FB和ST内容;移植方便,在其他程序中可以直接添加已写好的FB块。 ,三菱FX3U;步进电机换算;FB块;程序模块化;稳定性;可移植性;距离与脉冲数换算;速度与频率换算;FB和ST内容;移植方便。,三菱FX3U步进电机换算FB块:程序模块化与高稳定性实现
光伏逆变器TMS320F28335设计方案:Boost升压与单相全桥逆变,PWM与SPWM控制,MPPT恒压跟踪法实现,基于TMS320F28335DSP的光伏逆变器设计方案:Boost升压与单相全桥逆变电路实现及MPPT技术解析,光伏逆变器设计方案TMS320F28335-176资料 PCB 原理图 源代码 1. 本设计DC-DC采用Boost升压,DCAC采用单相全桥逆变电路结构。 2. 以TI公司的浮点数字信号控制器TMS320F28335DSP为控制电路核心,采用规则采样法和DSP片内ePWM模块功能实现PWM和SPWM波。 3. PV最大功率点跟踪(MPPT)采用了恒压跟踪法(CVT法)来实现,并用软件锁相环进行系统的同频、同相控制,控制灵活简单。 4.资料包含: 原理图,PCB(Protel或者AD打开),源程序代码(CCS打开),BOM清单,参考资料 ,核心关键词:TMS320F28335-176; 光伏逆变器; 升压; 逆变电路; 数字信号控制器; 规则采样法; ePWM模块; PWM; SPWM波; MPPT; 恒压跟踪法; 原理图; PCB; 源程序代码; BOM
centos9内核安装包
昆仑通态触摸屏与两台台达VFD-M变频器通讯实现:频率设定、启停控制与状态指示功能接线及设置说明,昆仑通态TPC7062KD触摸屏与两台台达VFD-M变频器通讯程序:实现频率设定、启停控制与状态指示,昆仑通态MCGS与2台台达VFD-M变频器通讯程序实现昆仑通态触摸屏与2台台达VFD-M变频器通讯,程序稳定可靠 器件:昆仑通态TPC7062KD触摸屏,2台台达VFD-M变频器,附送接线说明和设置说明 功能:实现频率设定,启停控制,实际频率读取等,状态指示 ,昆仑通态MCGS; 台达VFD-M变频器; 通讯程序; 稳定可靠; 频率设定; 启停控制; 实际频率读取; 状态指示; 接线说明; 设置说明,昆仑通态MCGS与台达VFD-M变频器通讯程序:稳定可靠,双机控制全实现
研控步进电机驱动器方案验证通过,核心技术成熟可生产,咨询优惠价格!硬件原理图与PCB源代码全包括。,研控步进电机驱动器方案验证通过,核心技术掌握,生产准备,咨询实际价格,包含硬件原理图及PCB源代码。,研控步进电机驱动器方案 验证可用,可以生产,欢迎咨询实际价格,快速掌握核心技术。 包括硬件原理图 PCB源代码 ,研控步进电机驱动器方案; 验证可用; 可生产; 核心技术; 硬件原理图; PCB源代码,研控步进电机驱动器方案验证通过,现可生产供应,快速掌握核心技术,附硬件原理图及PCB源代码。
高质量的OPCClient_UA源码分享:基于C#的OPC客户端开发源码集(测试稳定、多行业应用实例、VS编辑器支持),高质量OPC客户端源码解析:OPCClient_UA C#开发,适用于VS2019及多行业现场应用源码分享,OPCClient_UA源码OPC客户端源码(c#开发) 另外有opcserver,opcclient的da,ua版本的见其他链接。 本项目为VS2019开发,可用VS其他版本的编辑器打开项目。 已应用到多个行业的几百个应用现场,长时间运行稳定,可靠。 本项目中提供测试OPCClient的软件开发源码,有详细的注释,二次开发清晰明了。 ,OPCClient_UA; OPC客户端源码; C#开发; VS2019项目; 稳定可靠; 详细注释; 二次开发,OPC客户端源码:稳定可靠的C#开发实现,含详细注释支持二次开发
毕业设计
三菱FX3U六轴标准程序:六轴控制特色及转盘多工位流水作业功能实现,三菱FX3U六轴标准程序:实现3轴本体控制与3个1PG定位模块,轴点动控制、回零控制及定位功能,结合气缸与DD马达控制转盘的多工位流水作业模式,三菱FX3U六轴标准程序,程序包含本体3轴控制,扩展3个1PG定位模块,一共六轴。 程序有轴点动控制,回零控制,相对定位,绝对定位。 另有气缸数个,一个大是DD马达控制的转盘,整个是转盘多工位流水作业方式 ,三菱FX3U;六轴控制;轴点动控制;回零控制;定位模块;DD马达转盘;流水作业方式,三菱FX3U六轴程序控制:转盘流水作业的机械多轴系统
在 GEE(Google Earth Engine)中,XEE 包是一个用于处理和分析地理空间数据的工具。以下是对 GEE 中 XEE 包的具体介绍: 主要特性 地理数据处理:提供强大的函数和工具,用于处理遥感影像和其他地理空间数据。 高效计算:利用云计算能力,支持大规模数据集的快速处理。 可视化:内置可视化工具,方便用户查看和分析数据。 集成性:可以与其他 GEE API 和工具无缝集成,支持多种数据源。 适用场景 环境监测:用于监测森林砍伐、城市扩展、水体变化等环境问题。 农业分析:分析作物生长、土地利用变化等农业相关数据。 气候研究:研究气候变化对生态系统和人类活动的影响。
基于博途V16的邮件分拣机控制系统设计与实现:西门子S7-1200PLC与TP700触摸屏程序化及其仿真视频与CAD接线控制要求详解。,邮件分拣机自动化系统设计与实现:基于西门子S7-1200PLC与TP700触摸屏的博途V16程序,包含仿真视频、CAD接线及控制要求详解。,邮件分拣机控制系统西门子S7-1200PLC和TP700触摸屏程序博途V16,带仿真视频CAD接线和控制要求 ,邮件分拣; 控制系统; 西门子S7-1200PLC; TP700触摸屏程序; 博途V16; 仿真视频; CAD接线; 控制要求,邮件分拣机控制系统:S7-1200PLC与TP700触摸屏程序博途V16集成仿真视频CAD控制要求