`
wyzxzws
  • 浏览: 392394 次
  • 性别: Icon_minigender_1
  • 来自: dazhou
社区版块
存档分类
最新评论

常见排序总结

阅读更多

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):
1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就
说这种排序方法是稳定的。反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,
a2,a3,a5就不是稳定的了。2、内排序和外排序

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
================================================================================
*/

 


/*
================================================
功能:选择排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
int i, j, min, t;

for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/
{
min = i; /*假设当前下标为i的数最小,比较后再调整*/
for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/
{
if (*(x+j) < *(x+min))
{
min = j; /*如果后面的数比前面的小,则记下它的下标*/
}
}

if (min != i) /*如果min在循环中改变了,就需要交换数据*/
{
t = *(x+i);
*(x+i) = *(x+min);
*(x+min) = t;
}
}
}


/*
================================================
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。

直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
int i, j, t;

for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
{
/*
暂存下标为i的数。注意:下标从1开始,原因就是开始时
第一个数即下标为0的数,前面没有任何数,单单一个,认为
它是排好顺序的。
*/
t=*(x+i);
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
{
*(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
}

*(x+j+1) = t; /*找到下标为i的数的放置位置*/
}
}


/*
================================================
功能:冒泡排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。

下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。

冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/

void bubble_sort(int *x, int n)
{
int j, k, h, t;

for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
{
for (j=0, k=0; j<h; j++) /*每次预置k=0,循环扫描后更新k*/
{
if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/
{
t = *(x+j);
*(x+j) = *(x+j+1);
*(x+j+1) = t; /*完成交换*/
k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
}
}
}
}

 


/*
================================================
功能:希尔排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。

下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。

希尔排序是不稳定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
int h, j, k, t;

for (h=n/2; h>0; h=h/2) /*控制增量*/
{
for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/
{
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{
*(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}


/*
================================================
功能:快速排序
输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述:

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。

显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
函数是用递归实现的,有兴趣的朋友可以改成非递归的。

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)

=====================================================
*/
void quick_sort(int *x, int low, int high)
{
int i, j, t;

if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
{
i = low;
j = high;
t = *(x+low); /*暂存基准点的数*/

while (i<j) /*循环扫描*/
{
while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/
{
j--; /*前移一个位置*/
}

if (i<j)
{
*(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
i++; /*后移一个位置,并以此为基准点*/
}

while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/
{
i++; /*后移一个位置*/
}

if (i<j)
{
*(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
j--; /*前移一个位置*/
}
}

*(x+i) = t; /*一遍扫描完后,放到适当位置*/
quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/
quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/
}
}


/*
================================================
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。

由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
的堆,并对它们作交换,最后得到有n个节点的有序序列。

从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。

堆排序是不稳定的。算法时间复杂度O(nlog2n)。

*/
/*
功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
int t, k, j;

t = *(x+s); /*暂存开始元素*/
k = s; /*开始元素下标*/
j = 2*k + 1; /*右子树元素下标*/

while (j<n)
{
if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/
{
j++;
}

if (t<*(x+j)) /*调整*/
{
*(x+k) = *(x+j);
k = j; /*调整后,开始元素也随之调整*/
j = 2*k + 1;
}
else /*没有需要调整了,已经是个堆了,退出循环。*/
{
break;
}
}

*(x+k) = t; /*开始元素放到它正确位置*/
}


/*
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p;

for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}

for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆顶放到最后*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的数再建堆*/
}
}


void main()
{
#define MAX 4
int *p, i, a[MAX];

/*录入测试数据*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i<MAX; i++)
{
scanf("%d",p++);
}
printf("\n");

/*测试选择排序*/


p = a;
select_sort(p,MAX);
/**/


/*测试直接插入排序*/

/*
p = a;
insert_sort(p,MAX);
*/


/*测试冒泡排序*/

/*
p = a;
insert_sort(p,MAX);
*/

/*测试快速排序*/

/*
p = a;
quick_sort(p,0,MAX-1);
*/

/*测试堆排序*/

/*
p = a;
heap_sort(p,MAX);
*/

for (p=a, i=0; i<MAX; i++)
{
printf("%d ",*p++);
}

printf("\n");
system("pause");
}

 

分享到:
评论

相关推荐

    常见排序算法总结.pdf

    【排序算法总结】 排序算法是计算机科学中处理数据排列的重要工具,主要分为稳定排序和非稳定排序、内排序和外排序两大类。稳定排序保证了相同元素在排序后的相对位置不变,而非稳定排序则不作此保证。内排序是指...

    常见排序方法总结(c版)

    在本文档中,我们主要探讨了四种经典的排序算法:冒泡排序、简单选择排序、快速排序和堆排序,这些算法都是在C语言环境下实现的。排序算法是计算机科学中的基础内容,它们对于组织和处理大量数据至关重要。 1. **...

    常见排序算法汇总

    总结来说,这些排序算法各有优劣,适用于不同的场景。冒泡排序和选择排序简单但效率低,适合小规模数据;插入排序和堆排序在中等规模数据上表现良好;归并排序和快速排序在大规模数据上表现出色,归并排序稳定而快速...

    Java实现常见排序算法总结

    【Java实现常见排序算法总结】 排序算法是计算机科学中至关重要的一部分,它涉及到数据处理和算法设计。本文将探讨两种常见的排序算法在Java中的实现:直接插入排序和希尔排序。 1. **直接插入排序(直接插入排序...

    常见排序算法总结

    ### 常见排序算法总结 #### 一、引言 在计算机科学中,排序算法是一种重要的基础算法,被广泛应用于各种数据处理场景之中。尽管现代编程语言和库提供了高效且可靠的排序方法,但理解基本排序算法的工作原理仍然对...

    八种常见排序算法总结(转)

    "八种常见排序算法总结" 直接插入排序是一种简单的排序算法,它的思想是每次选择一个元素 K 插入到之前已排好序的部分 A[1…i]中,插入过程中 K 依次由后向前与 A[1…i]中的元素进行比较。若发现 A[x]&gt;=K,则将 K ...

    常见排序算法总结.docx

    以上就是对常见排序算法的总结,包括稳定性和非稳定性、内排序与外排序的概念,以及插入排序和选择排序的详细讲解。这些基础排序算法在实际编程中非常常见,理解它们的工作原理有助于优化算法性能并解决实际问题。

    java实现数据结构常见排序算法及详解

    ### Java 实现数据结构常见排序算法及详解 #### 排序算法概述 排序算法是计算机科学中的基础概念之一,主要用于将一系列数据按照特定规则进行排列。根据数据处理方式的不同,排序算法大致分为两大类:比较排序与非...

    排序算法总结(常见算法总结分析)

    本文将深入探讨三种常见的排序算法:选择排序、直接插入排序和冒泡排序。 1. **选择排序(Selection Sort)** 选择排序的基本思想是通过多轮迭代,每次找出剩余未排序部分中的最小(或最大)元素,将其放到已排序...

    8个常见数据结构排序算法总结

    文档格式是chm文档,方便查看,点击即可快速浏览排序算法,里面的程序可以直接拿来用,实现语言是标准的C程序。

    数据结构排序总结及java实现

    ### 数据结构排序总结及Java实现 #### 排序概述 排序是计算机科学中一项重要的基础技术,用于将一组数据按照特定顺序(升序或降序)进行排列。本篇文章将介绍几种常见的排序算法,并提供相应的Java实现代码。这些...

    常见的排序算法总结

    以下是对标题和描述中提及的七种常见排序算法的详细解释: 1. **冒泡排序**: 冒泡排序是一种简单直观的排序算法,通过重复遍历数组,比较相邻元素并交换位置来实现排序。如果前一个元素比后一个元素大,则交换...

    java实现常见排序算法

    Java中常见的插入排序实现有三种:直接插入排序、折半插入排序和希尔排序。 1. **直接插入排序**: 直接插入排序的基本思想是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增1的有序表。在Java...

    【排序结构5】 基于比较的内部排序总结

    【排序结构5】基于比较的内部排序总结 在计算机科学中,排序是将一组数据按照特定顺序排列的过程。内部排序,或称为内存排序,是指数据记录在内存中进行的排序,与外部排序(数据量太大无法全部装入内存)相对。本...

    数据结构中几种常用的排序算法总结

    根据计算机科学中的常见分类标准,排序算法可以分为几类: 1. **计算复杂度**:排序算法的性能通常通过其在最坏、平均和最好情况下的时间复杂度来衡量。优秀的排序算法通常在平均情况下具有O(nlogn)的时间复杂度,...

    常见的排序算法 常见的排序算法 常见的排序算法

    根据提供的标题、描述、标签及部分内容,我们可以梳理出几种常见的排序算法,并对每种算法进行详细的解释和分析。 ### 1. 插入排序(Insertion Sort) **时间复杂度:** O(n^2) **空间复杂度:** O(1) **稳定性...

    排序算法总结.doc

    以下是对几种常见排序算法的详细说明: 1. 插入排序: 插入排序是一种简单的排序算法,其时间复杂度为O(n^2)。它通过将每个元素插入到已排序的部分中找到正确位置来工作,保持已排序部分的稳定性。当数组近乎有序...

    几种排序算法总结及比较

    这里我们将深入探讨几种常见的排序算法,并在VS2013环境下进行实现和比较。 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的交换排序,它通过重复遍历待排序的数列,依次比较相邻元素并根据需要交换位置,直到...

    排序算法总结和比较

    本文主要总结和比较了九种常见的排序算法:快速排序、归并排序、堆排序、Shell排序、插入排序、冒泡排序、交换排序、选择排序以及基数排序。 1. **快速排序**:快速排序是一种基于分治思想的高效排序算法,由C.A.R....

Global site tag (gtag.js) - Google Analytics