`
wx1569063608
  • 浏览: 23071 次
文章分类
社区版块
存档分类
最新评论

使用Java来处理GIF图片

 
阅读更多

 一个2个类,一个是读图片的类GifDecoder,一个是写图片的类AnimatedGifEncoder

使用还是挺方便的,下面举个栗子

    public static void main(String[] args) throws IOException {
		GifDecoder decoder = new GifDecoder();
		int status = decoder.read("C:\\Users\\Administrator\\Desktop\\bigImage\\07.gif");
		if (status != GifDecoder.STATUS_OK) {
			throw new IOException("read image error!");
		}
		AnimatedGifEncoder e = new AnimatedGifEncoder();
        //保存的目标图片
		e.start("C:\\Users\\Administrator\\Desktop\\bigImage\\cc.gif");
		e.setRepeat(decoder.getLoopCount());
		e.setDelay(decoder.getDelay(0));
		for (int i = 0; i < decoder.getFrameCount(); i++) {
			BufferedImage image = decoder.getFrame(i);
			//可以加入对图片的处理,比如缩放,压缩质量
			e.addFrame(image);
		}
		e.finish();
	}
import java.awt.AlphaComposite;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics2D;
import java.awt.Rectangle;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferInt;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;

public class GifDecoder {

	/**
	 * File read status: No errors.
	 */
	public static final int STATUS_OK = 0;

	/**
	 * File read status: Error decoding file (may be partially decoded)
	 */
	public static final int STATUS_FORMAT_ERROR = 1;

	/**
	 * File read status: Unable to open source.
	 */
	public static final int STATUS_OPEN_ERROR = 2;

	protected BufferedInputStream in;

	protected int status;

	protected int width; // full image width

	protected int height; // full image height

	protected boolean gctFlag; // global color table used

	protected int gctSize; // size of global color table

	protected int loopCount = 1; // iterations; 0 = repeat forever

	protected int[] gct; // global color table

	protected int[] lct; // local color table

	protected int[] act; // active color table

	protected int bgIndex; // background color index

	protected int bgColor; // background color

	protected int lastBgColor; // previous bg color

	protected int pixelAspect; // pixel aspect ratio

	protected boolean lctFlag; // local color table flag

	protected boolean interlace; // interlace flag

	protected int lctSize; // local color table size

	protected int ix, iy, iw, ih; // current image rectangle

	protected Rectangle lastRect; // last image rect

	protected BufferedImage image; // current frame

	protected BufferedImage lastImage; // previous frame

	protected byte[] block = new byte[256]; // current data block

	protected int blockSize = 0; // block size
	// last graphic control extension info

	protected int dispose = 0;

	// 0=no action; 1=leave in place; 2=restore to bg; 3=restore to prev
	protected int lastDispose = 0;

	protected boolean transparency = false; // use transparent color

	protected int delay = 0; // delay in milliseconds

	protected int transIndex; // transparent color index

	protected static final int MaxStackSize = 4096;

	// max decoder pixel stack size
	// LZW decoder working arrays
	protected short[] prefix;

	protected byte[] suffix;

	protected byte[] pixelStack;

	protected byte[] pixels;

	protected ArrayList<GifFrame> frames; // frames read from current file

	protected int frameCount;

	static class GifFrame {

		public GifFrame(BufferedImage im, int del) {
			image = im;
			delay = del;
		}

		public BufferedImage image;

		public int delay;
	}

	/**
	 * Gets display duration for specified frame.
	 *
	 * @param n int index of frame
	 * @return delay in milliseconds
	 */
	public int getDelay(int n) {
		//
		delay = -1;
		if ((n >= 0) && (n < frameCount)) {
			delay = ((GifFrame) frames.get(n)).delay;
		}
		return delay;
	}

	/**
	 * Gets the number of frames read from file.
	 * 
	 * @return frame count
	 */
	public int getFrameCount() {
		return frameCount;
	}

	/**
	 * Gets the first (or only) image read.
	 *
	 * @return BufferedImage containing first frame, or null if none.
	 */
	public BufferedImage getImage() {
		return getFrame(0);
	}

	/**
	 * Gets the "Netscape" iteration count, if any. A count of 0 means repeat indefinitiely.
	 *
	 * @return iteration count if one was specified, else 1.
	 */
	public int getLoopCount() {
		return loopCount;
	}

	/**
	 * Creates new frame image from current data (and previous frames as specified by their disposition codes).
	 */
	protected void setPixels() {
		// expose destination image's pixels as int array
		int[] dest = ((DataBufferInt) image.getRaster().getDataBuffer()).getData();
		// fill in starting image contents based on last image's dispose code
		if (lastDispose > 0) {
			if (lastDispose == 3) {
				// use image before last
				int n = frameCount - 2;
				if (n > 0) {
					lastImage = getFrame(n - 1);
				} else {
					lastImage = null;
				}
			}
			if (lastImage != null) {
				int[] prev = ((DataBufferInt) lastImage.getRaster().getDataBuffer()).getData();
				System.arraycopy(prev, 0, dest, 0, width * height);
				// copy pixels
				if (lastDispose == 2) {
					// fill last image rect area with background color
					Graphics2D g = image.createGraphics();
					Color c = null;
					if (transparency) {
						c = new Color(0, 0, 0, 0); // assume background is transparent
					} else {
						c = new Color(lastBgColor); // use given background color
					}
					g.setColor(c);
					g.setComposite(AlphaComposite.Src); // replace area
					g.fill(lastRect);
					g.dispose();
				}
			}
		}
		// copy each source line to the appropriate place in the destination
		int pass = 1;
		int inc = 8;
		int iline = 0;
		for (int i = 0; i < ih; i++) {
			int line = i;
			if (interlace) {
				if (iline >= ih) {
					pass++;
					switch (pass) {
					case 2:
						iline = 4;
						break;
					case 3:
						iline = 2;
						inc = 4;
						break;
					case 4:
						iline = 1;
						inc = 2;
					}
				}
				line = iline;
				iline += inc;
			}
			line += iy;
			if (line < height) {
				int k = line * width;
				int dx = k + ix; // start of line in dest
				int dlim = dx + iw; // end of dest line
				if ((k + width) < dlim) {
					dlim = k + width; // past dest edge
				}
				int sx = i * iw; // start of line in source
				while (dx < dlim) {
					// map color and insert in destination
					int index = ((int) pixels[sx++]) & 0xff;
					int c = act[index];
					if (c != 0) {
						dest[dx] = c;
					}
					dx++;
				}
			}
		}
	}

	/**
	 * Gets the image contents of frame n.
	 *
	 * @return BufferedImage representation of frame, or null if n is invalid.
	 */
	public BufferedImage getFrame(int n) {
		BufferedImage im = null;
		if ((n >= 0) && (n < frameCount)) {
			im = ((GifFrame) frames.get(n)).image;
		}
		return im;
	}

	/**
	 * Gets the image contents
	 *
	 * @return BufferedImage representation of frame, or null if n is invalid.
	 */
	public List<BufferedImage> getFrames() {
		List<BufferedImage> bms = new ArrayList<BufferedImage>();
		for (GifFrame frame : this.frames) {
			bms.add(frame.image);
		}
		return bms;
	}

	/**
	 * Gets image size.
	 *
	 * @return GIF image dimensions
	 */
	public Dimension getFrameSize() {
		return new Dimension(width, height);
	}

	/**
	 * Reads GIF image from stream
	 *
	 * @param BufferedInputStream containing GIF file.
	 * @return read status code (0 = no errors)
	 */
	public int read(BufferedInputStream is) {
		init();
		if (is != null) {
			in = is;
			readHeader();
			if (!err()) {
				readContents();
				if (frameCount < 0) {
					status = STATUS_FORMAT_ERROR;
				}
			}
		} else {
			status = STATUS_OPEN_ERROR;
		}
		try {
			is.close();
		} catch (IOException e) {
		}
		return status;
	}

	/**
	 * Reads GIF image from stream
	 *
	 * @param InputStream containing GIF file.
	 * @return read status code (0 = no errors)
	 */
	public int read(InputStream is) {
		init();
		if (is != null) {
			if (!(is instanceof BufferedInputStream))
				is = new BufferedInputStream(is);
			in = (BufferedInputStream) is;
			readHeader();
			if (!err()) {
				readContents();
				if (frameCount < 0) {
					status = STATUS_FORMAT_ERROR;
				}
			}
		} else {
			status = STATUS_OPEN_ERROR;
		}
		try {
			is.close();
		} catch (IOException e) {
		}
		return status;
	}

	/**
	 * Reads GIF file from specified file/URL source (URL assumed if name contains ":/" or "file:")
	 *
	 * @param name String containing source
	 * @return read status code (0 = no errors)
	 */
	public int read(String name) {
		status = STATUS_OK;
		try {
			name = name.trim().toLowerCase();
			if ((name.indexOf("file:") >= 0) || (name.indexOf(":/") > 0)) {
				URL url = new URL(name);
				in = new BufferedInputStream(url.openStream());
			} else {
				in = new BufferedInputStream(new FileInputStream(name));
			}
			status = read(in);
		} catch (IOException e) {
			status = STATUS_OPEN_ERROR;
		}
		return status;
	}

	/**
	 * Decodes LZW image data into pixel array. Adapted from John Cristy's ImageMagick.
	 */
	protected void decodeImageData() {
		int NullCode = -1;
		int npix = iw * ih;
		int available, clear, code_mask, code_size, end_of_information, in_code, old_code, bits, code, count, i, datum, data_size, first,
				top, bi, pi;
		if ((pixels == null) || (pixels.length < npix)) {
			pixels = new byte[npix]; // allocate new pixel array
		}
		if (prefix == null)
			prefix = new short[MaxStackSize];
		if (suffix == null)
			suffix = new byte[MaxStackSize];
		if (pixelStack == null)
			pixelStack = new byte[MaxStackSize + 1];
		// Initialize GIF data stream decoder.
		data_size = read();
		clear = 1 << data_size;
		end_of_information = clear + 1;
		available = clear + 2;
		old_code = NullCode;
		code_size = data_size + 1;
		code_mask = (1 << code_size) - 1;
		for (code = 0; code < clear; code++) {
			prefix[code] = 0;
			suffix[code] = (byte) code;
		}
		// Decode GIF pixel stream.
		datum = bits = count = first = top = pi = bi = 0;
		for (i = 0; i < npix;) {
			if (top == 0) {
				if (bits < code_size) {
					// Load bytes until there are enough bits for a code.
					if (count == 0) {
						// Read a new data block.
						count = readBlock();
						if (count <= 0)
							break;
						bi = 0;
					}
					datum += (((int) block[bi]) & 0xff) << bits;
					bits += 8;
					bi++;
					count--;
					continue;
				}
				// Get the next code.
				code = datum & code_mask;
				datum >>= code_size;
				bits -= code_size;
				// Interpret the code
				if ((code > available) || (code == end_of_information))
					break;
				if (code == clear) {
					// Reset decoder.
					code_size = data_size + 1;
					code_mask = (1 << code_size) - 1;
					available = clear + 2;
					old_code = NullCode;
					continue;
				}
				if (old_code == NullCode) {
					pixelStack[top++] = suffix[code];
					old_code = code;
					first = code;
					continue;
				}
				in_code = code;
				if (code == available) {
					pixelStack[top++] = (byte) first;
					code = old_code;
				}
				while (code > clear) {
					pixelStack[top++] = suffix[code];
					code = prefix[code];
				}
				first = ((int) suffix[code]) & 0xff;
				// Add a new string to the string table,
				if (available >= MaxStackSize)
					break;
				pixelStack[top++] = (byte) first;
				prefix[available] = (short) old_code;
				suffix[available] = (byte) first;
				available++;
				if (((available & code_mask) == 0) && (available < MaxStackSize)) {
					code_size++;
					code_mask += available;
				}
				old_code = in_code;
			}
			// Pop a pixel off the pixel stack.
			top--;
			pixels[pi++] = pixelStack[top];
			i++;
		}
		for (i = pi; i < npix; i++) {
			pixels[i] = 0; // clear missing pixels
		}
	}

	/**
	 * Returns true if an error was encountered during reading/decoding
	 */
	protected boolean err() {
		return status != STATUS_OK;
	}

	/**
	 * Initializes or re-initializes reader
	 */
	protected void init() {
		status = STATUS_OK;
		frameCount = 0;
		frames = new ArrayList<GifFrame>();
		gct = null;
		lct = null;
	}

	/**
	 * Reads a single byte from the input stream.
	 */
	protected int read() {
		int curByte = 0;
		try {
			curByte = in.read();
		} catch (IOException e) {
			status = STATUS_FORMAT_ERROR;
		}
		return curByte;
	}

	/**
	 * Reads next variable length block from input.
	 *
	 * @return number of bytes stored in "buffer"
	 */
	protected int readBlock() {
		blockSize = read();
		int n = 0;
		if (blockSize > 0) {
			try {
				int count = 0;
				while (n < blockSize) {
					count = in.read(block, n, blockSize - n);
					if (count == -1)
						break;
					n += count;
				}
			} catch (IOException e) {
			}
			if (n < blockSize) {
				status = STATUS_FORMAT_ERROR;
			}
		}
		return n;
	}

	/**
	 * Reads color table as 256 RGB integer values
	 *
	 * @param ncolors int number of colors to read
	 * @return int array containing 256 colors (packed ARGB with full alpha)
	 */
	protected int[] readColorTable(int ncolors) {
		int nbytes = 3 * ncolors;
		int[] tab = null;
		byte[] c = new byte[nbytes];
		int n = 0;
		try {
			n = in.read(c);
		} catch (IOException e) {
		}
		if (n < nbytes) {
			status = STATUS_FORMAT_ERROR;
		} else {
			tab = new int[256]; // max size to avoid bounds checks
			int i = 0;
			int j = 0;
			while (i < ncolors) {
				int r = ((int) c[j++]) & 0xff;
				int g = ((int) c[j++]) & 0xff;
				int b = ((int) c[j++]) & 0xff;
				tab[i++] = 0xff000000 | (r << 16) | (g << 8) | b;
			}
		}
		return tab;
	}

	/**
	 * Main file parser. Reads GIF content blocks.
	 */
	protected void readContents() {
		// read GIF file content blocks
		boolean done = false;
		while (!(done || err())) {
			int code = read();
			switch (code) {
			case 0x2C: // image separator
				readImage();
				break;
			case 0x21: // extension
				code = read();
				switch (code) {
				case 0xf9: // graphics control extension
					readGraphicControlExt();
					break;
				case 0xff: // application extension
					readBlock();
					String app = "";
					for (int i = 0; i < 11; i++) {
						app += (char) block[i];
					}
					if (app.equals("NETSCAPE2.0")) {
						readNetscapeExt();
					} else
						skip(); // don't care
					break;
				default: // uninteresting extension
					skip();
				}
				break;
			case 0x3b: // terminator
				done = true;
				break;
			case 0x00: // bad byte, but keep going and see what happens
				break;
			default:
				status = STATUS_FORMAT_ERROR;
			}
		}
	}

	/**
	 * Reads Graphics Control Extension values
	 */
	protected void readGraphicControlExt() {
		read(); // block size
		int packed = read(); // packed fields
		dispose = (packed & 0x1c) >> 2; // disposal method
		if (dispose == 0) {
			dispose = 1; // elect to keep old image if discretionary
		}
		transparency = (packed & 1) != 0;
		delay = readShort() * 10; // delay in milliseconds
		transIndex = read(); // transparent color index
		read(); // block terminator
	}

	/**
	 * Reads GIF file header information.
	 */
	protected void readHeader() {
		String id = "";
		for (int i = 0; i < 6; i++) {
			id += (char) read();
		}
		if (!id.startsWith("GIF")) {
			status = STATUS_FORMAT_ERROR;
			return;
		}
		readLSD();
		if (gctFlag && !err()) {
			gct = readColorTable(gctSize);
			bgColor = gct[bgIndex];
		}
	}

	/**
	 * Reads next frame image
	 */
	protected void readImage() {
		ix = readShort(); // (sub)image position & size
		iy = readShort();
		iw = readShort();
		ih = readShort();
		int packed = read();
		lctFlag = (packed & 0x80) != 0; // 1 - local color table flag
		interlace = (packed & 0x40) != 0; // 2 - interlace flag
		// 3 - sort flag
		// 4-5 - reserved
		lctSize = 2 << (packed & 7); // 6-8 - local color table size
		if (lctFlag) {
			lct = readColorTable(lctSize); // read table
			act = lct; // make local table active
		} else {
			act = gct; // make global table active
			if (bgIndex == transIndex)
				bgColor = 0;
		}
		int save = 0;
		if (transparency) {
			save = act[transIndex];
			act[transIndex] = 0; // set transparent color if specified
		}
		if (act == null) {
			status = STATUS_FORMAT_ERROR; // no color table defined
		}
		if (err())
			return;
		decodeImageData(); // decode pixel data
		skip();
		if (err())
			return;
		frameCount++;
		// create new image to receive frame data
		image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB_PRE);
		setPixels(); // transfer pixel data to image
		frames.add(new GifFrame(image, delay)); // add image to frame list
		if (transparency) {
			act[transIndex] = save;
		}
		resetFrame();
	}

	/**
	 * Reads Logical Screen Descriptor
	 */
	protected void readLSD() {
		// logical screen size
		width = readShort();
		height = readShort();
		// packed fields
		int packed = read();
		gctFlag = (packed & 0x80) != 0; // 1 : global color table flag
		// 2-4 : color resolution
		// 5 : gct sort flag
		gctSize = 2 << (packed & 7); // 6-8 : gct size
		bgIndex = read(); // background color index
		pixelAspect = read(); // pixel aspect ratio
	}

	/**
	 * Reads Netscape extenstion to obtain iteration count
	 */
	protected void readNetscapeExt() {
		do {
			readBlock();
			if (block[0] == 1) {
				// loop count sub-block
				int b1 = ((int) block[1]) & 0xff;
				int b2 = ((int) block[2]) & 0xff;
				loopCount = (b2 << 8) | b1;
			}
		} while ((blockSize > 0) && !err());
	}

	/**
	 * Reads next 16-bit value, LSB first
	 */
	protected int readShort() {
		// read 16-bit value, LSB first
		return read() | (read() << 8);
	}

	/**
	 * Resets frame state for reading next image.
	 */
	protected void resetFrame() {
		lastDispose = dispose;
		lastRect = new Rectangle(ix, iy, iw, ih);
		lastImage = image;
		lastBgColor = bgColor;
		// int dispose = 0;
		// boolean transparency = false;
		// int delay = 0;
		lct = null;
	}

	protected void skip() {
		do {
			readBlock();
		} while ((blockSize > 0) && !err());
	}
}
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

/**
 * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or more frames.
 * 
 * <pre>
 *  Example:
 *     AnimatedGifEncoder e = new AnimatedGifEncoder();
 *     e.start(outputFileName);
 *     e.setDelay(1000);   // 1 frame per sec
 *     e.addFrame(image1);
 *     e.addFrame(image2);
 *     e.finish();
 * </pre>
 * 
 * No copyright asserted on the source code of this class. May be used for any purpose, however, refer to the Unisys LZW patent for
 * restrictions on use of the associated LZWEncoder class. Please forward any corrections to kweiner@fmsware.com.
 * 
 * @author Kevin Weiner, FM Software
 * @version 1.03 November 2003
 * 
 */
public class AnimatedGifEncoder {

	protected int width; // image size

	protected int height;

	protected Color transparent = null; // transparent color if given

	protected int transIndex; // transparent index in color table

	protected int repeat = -1; // no repeat

	protected int delay = 0; // frame delay (hundredths)

	protected boolean started = false; // ready to output frames

	protected OutputStream out;

	protected BufferedImage image; // current frame

	protected byte[] pixels; // BGR byte array from frame

	protected byte[] indexedPixels; // converted frame indexed to palette

	protected int colorDepth; // number of bit planes

	protected byte[] colorTab; // RGB palette

	protected boolean[] usedEntry = new boolean[256]; // active palette entries

	protected int palSize = 7; // color table size (bits-1)

	protected int dispose = -1; // disposal code (-1 = use default)

	protected boolean closeStream = false; // close stream when finished

	protected boolean firstFrame = true;

	protected boolean sizeSet = false; // if false, get size from first frame

	protected int sample = 10; // default sample interval for quantizer

	/**
	 * Sets the delay time between each frame, or changes it for subsequent frames (applies to last frame added).
	 * 
	 * @param ms int delay time in milliseconds
	 */
	public void setDelay(int ms) {
		delay = Math.round(ms / 10.0f);
	}

	/**
	 * Sets the GIF frame disposal code for the last added frame and any subsequent frames. Default is 0 if no transparent color has been
	 * set, otherwise 2.
	 * 
	 * @param code int disposal code.
	 */
	public void setDispose(int code) {
		if (code >= 0) {
			dispose = code;
		}
	}

	/**
	 * Sets the number of times the set of GIF frames should be played. Default is 1; 0 means play indefinitely. Must be invoked before the
	 * first image is added.
	 * 
	 * @param iter int number of iterations.
	 * @return
	 */
	public void setRepeat(int iter) {
		if (iter >= 0) {
			repeat = iter;
		}
	}

	/**
	 * Sets the transparent color for the last added frame and any subsequent frames. Since all colors are subject to modification in the
	 * quantization process, the color in the final palette for each frame closest to the given color becomes the transparent color for that
	 * frame. May be set to null to indicate no transparent color.
	 * 
	 * @param c Color to be treated as transparent on display.
	 */
	public void setTransparent(Color c) {
		transparent = c;
	}

	/**
	 * Adds next GIF frame. The frame is not written immediately, but is actually deferred until the next frame is received so that timing
	 * data can be inserted. Invoking <code>finish()</code> flushes all frames. If <code>setSize</code> was not invoked, the size of the
	 * first image is used for all subsequent frames.
	 * 
	 * @param im BufferedImage containing frame to write.
	 * @return true if successful.
	 */
	public boolean addFrame(BufferedImage im) {
		if ((im == null) || !started) {
			return false;
		}
		boolean ok = true;
		try {
			if (!sizeSet) {
				// use first frame's size
				setSize(im.getWidth(), im.getHeight());
			}
			image = im;
			getImagePixels(); // convert to correct format if necessary
			analyzePixels(); // build color table & map pixels
			if (firstFrame) {
				writeLSD(); // logical screen descriptior
				writePalette(); // global color table
				if (repeat >= 0) {
					// use NS app extension to indicate reps
					writeNetscapeExt();
				}
			}
			writeGraphicCtrlExt(); // write graphic control extension
			writeImageDesc(); // image descriptor
			if (!firstFrame) {
				writePalette(); // local color table
			}
			writePixels(); // encode and write pixel data
			firstFrame = false;
		} catch (IOException e) {
			ok = false;
		}

		return ok;
	}

	/**
	 * Flushes any pending data and closes output file. If writing to an OutputStream, the stream is not closed.
	 */
	public boolean finish() {
		if (!started)
			return false;
		boolean ok = true;
		started = false;
		try {
			out.write(0x3b); // gif trailer
			out.flush();
			if (closeStream) {
				out.close();
			}
		} catch (IOException e) {
			ok = false;
		}

		// reset for subsequent use
		transIndex = 0;
		out = null;
		image = null;
		pixels = null;
		indexedPixels = null;
		colorTab = null;
		closeStream = false;
		firstFrame = true;

		return ok;
	}

	/**
	 * Sets frame rate in frames per second. Equivalent to <code>setDelay(1000/fps)</code>.
	 * 
	 * @param fps float frame rate (frames per second)
	 */
	public void setFrameRate(float fps) {
		if (fps != 0f) {
			delay = Math.round(100f / fps);
		}
	}

	/**
	 * Sets quality of color quantization (conversion of images to the maximum 256 colors allowed by the GIF specification). Lower values
	 * (minimum = 1) produce better colors, but slow processing significantly. 10 is the default, and produces good color mapping at
	 * reasonable speeds. Values greater than 20 do not yield significant improvements in speed.
	 * 
	 * @param quality int greater than 0.
	 * @return
	 */
	public void setQuality(int quality) {
		if (quality < 1)
			quality = 1;
		sample = quality;
	}

	/**
	 * Sets the GIF frame size. The default size is the size of the first frame added if this method is not invoked.
	 * 
	 * @param w int frame width.
	 * @param h int frame width.
	 */
	public void setSize(int w, int h) {
		if (started && !firstFrame)
			return;
		width = w;
		height = h;
		if (width < 1)
			width = 320;
		if (height < 1)
			height = 240;
		sizeSet = true;
	}

	/**
	 * Initiates GIF file creation on the given stream. The stream is not closed automatically.
	 * 
	 * @param os OutputStream on which GIF images are written.
	 * @return false if initial write failed.
	 */
	public boolean start(OutputStream os) {
		if (os == null)
			return false;
		boolean ok = true;
		closeStream = false;
		out = os;
		try {
			writeString("GIF89a"); // header
		} catch (IOException e) {
			ok = false;
		}
		return started = ok;
	}

	/**
	 * Initiates writing of a GIF file with the specified name.
	 * 
	 * @param file String containing output file name.
	 * @return false if open or initial write failed.
	 */
	public boolean start(String file) {
		boolean ok = true;
		try {
			out = new BufferedOutputStream(new FileOutputStream(file));
			ok = start(out);
			closeStream = true;
		} catch (IOException e) {
			ok = false;
		}
		return started = ok;
	}

	/**
	 * Analyzes image colors and creates color map.
	 */
	protected void analyzePixels() {
		int len = pixels.length;
		int nPix = len / 3;
		indexedPixels = new byte[nPix];
		NeuQuant nq = new NeuQuant(pixels, len, sample);
		// initialize quantizer
		colorTab = nq.process(); // create reduced palette
		// convert map from BGR to RGB
		for (int i = 0; i < colorTab.length; i += 3) {
			byte temp = colorTab[i];
			colorTab[i] = colorTab[i + 2];
			colorTab[i + 2] = temp;
			usedEntry[i / 3] = false;
		}
		// map image pixels to new palette
		int k = 0;
		for (int i = 0; i < nPix; i++) {
			int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff);
			usedEntry[index] = true;
			indexedPixels[i] = (byte) index;
		}
		pixels = null;
		colorDepth = 8;
		palSize = 7;
		// get closest match to transparent color if specified
		if (transparent != null) {
			transIndex = findClosest(transparent);
		}
	}

	/**
	 * Returns index of palette color closest to c
	 * 
	 */
	protected int findClosest(Color c) {
		if (colorTab == null)
			return -1;
		int r = c.getRed();
		int g = c.getGreen();
		int b = c.getBlue();
		int minpos = 0;
		int dmin = 256 * 256 * 256;
		int len = colorTab.length;
		for (int i = 0; i < len;) {
			int dr = r - (colorTab[i++] & 0xff);
			int dg = g - (colorTab[i++] & 0xff);
			int db = b - (colorTab[i] & 0xff);
			int d = dr * dr + dg * dg + db * db;
			int index = i / 3;
			if (usedEntry[index] && (d < dmin)) {
				dmin = d;
				minpos = index;
			}
			i++;
		}
		return minpos;
	}

	/**
	 * Extracts image pixels into byte array "pixels"
	 */
	protected void getImagePixels() {
		int w = image.getWidth();
		int h = image.getHeight();
		int type = image.getType();
		if ((w != width) || (h != height) || (type != BufferedImage.TYPE_3BYTE_BGR)) {
			// create new image with right size/format
			BufferedImage temp = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
			Graphics2D g = temp.createGraphics();
			g.drawImage(image, 0, 0, null);
			image = temp;
		}
		pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
	}

	/**
	 * Writes Graphic Control Extension
	 */
	protected void writeGraphicCtrlExt() throws IOException {
		out.write(0x21); // extension introducer
		out.write(0xf9); // GCE label
		out.write(4); // data block size
		int transp, disp;
		if (transparent == null) {
			transp = 0;
			disp = 0; // dispose = no action
		} else {
			transp = 1;
			disp = 2; // force clear if using transparent color
		}
		if (dispose >= 0) {
			disp = dispose & 7; // user override
		}
		disp <<= 2;

		// packed fields
		out.write(0 | // 1:3 reserved
				disp | // 4:6 disposal
				0 | // 7 user input - 0 = none
				transp); // 8 transparency flag

		writeShort(delay); // delay x 1/100 sec
		out.write(transIndex); // transparent color index
		out.write(0); // block terminator
	}

	/**
	 * Writes Image Descriptor
	 */
	protected void writeImageDesc() throws IOException {
		out.write(0x2c); // image separator
		writeShort(0); // image position x,y = 0,0
		writeShort(0);
		writeShort(width); // image size
		writeShort(height);
		// packed fields
		if (firstFrame) {
			// no LCT - GCT is used for first (or only) frame
			out.write(0);
		} else {
			// specify normal LCT
			out.write(0x80 | // 1 local color table 1=yes
					0 | // 2 interlace - 0=no
					0 | // 3 sorted - 0=no
					0 | // 4-5 reserved
					palSize); // 6-8 size of color table
		}
	}

	/**
	 * Writes Logical Screen Descriptor
	 */
	protected void writeLSD() throws IOException {
		// logical screen size
		writeShort(width);
		writeShort(height);
		// packed fields
		out.write((0x80 | // 1 : global color table flag = 1 (gct used)
				0x70 | // 2-4 : color resolution = 7
				0x00 | // 5 : gct sort flag = 0
				palSize)); // 6-8 : gct size

		out.write(0); // background color index
		out.write(0); // pixel aspect ratio - assume 1:1
	}

	/**
	 * Writes Netscape application extension to define repeat count.
	 */
	protected void writeNetscapeExt() throws IOException {
		out.write(0x21); // extension introducer
		out.write(0xff); // app extension label
		out.write(11); // block size
		writeString("NETSCAPE" + "2.0"); // app id + auth code
		out.write(3); // sub-block size
		out.write(1); // loop sub-block id
		writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
		out.write(0); // block terminator
	}

	/**
	 * Writes color table
	 */
	protected void writePalette() throws IOException {
		out.write(colorTab, 0, colorTab.length);
		int n = (3 * 256) - colorTab.length;
		for (int i = 0; i < n; i++) {
			out.write(0);
		}
	}

	/**
	 * Encodes and writes pixel data
	 */
	protected void writePixels() throws IOException {
		LZWEncoder encoder = new LZWEncoder(width, height, indexedPixels, colorDepth);
		encoder.encode(out);
	}

	/**
	 * Write 16-bit value to output stream, LSB first
	 */
	protected void writeShort(int value) throws IOException {
		out.write(value & 0xff);
		out.write((value >> 8) & 0xff);
	}

	/**
	 * Writes string to output stream
	 */
	protected void writeString(String s) throws IOException {
		for (int i = 0; i < s.length(); i++) {
			out.write((byte) s.charAt(i));
		}
	}
}

/*
 * NeuQuant Neural-Net Quantization Algorithm ------------------------------------------
 * 
 * Copyright (c) 1994 Anthony Dekker
 * 
 * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See "Kohonen neural networks for optimal colour quantization" in
 * "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of the algorithm.
 * 
 * Any party obtaining a copy of these files from the author, directly or indirectly, is granted, free of charge, a full and unrestricted
 * irrevocable, world-wide, paid up, royalty-free, nonexclusive right and license to deal in this software and documentation files (the
 * "Software"), including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons who receive copies from any such party to do so, with the only requirement being that this copyright
 * notice remain intact.
 */

// Ported to Java 12/00 K Weiner
class NeuQuant {

	protected static final int netsize = 256; /* number of colours used */

	/* four primes near 500 - assume no image has a length so large */
	/* that it is divisible by all four primes */
	protected static final int prime1 = 499;

	protected static final int prime2 = 491;

	protected static final int prime3 = 487;

	protected static final int prime4 = 503;

	protected static final int minpicturebytes = (3 * prime4);

	/* minimum size for input image */

	/*
	 * Program Skeleton ---------------- [select samplefac in range 1..30] [read image from input file] pic = (unsigned char*)
	 * malloc(3*width*height); initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output image header, using
	 * writecolourmap(f)] inxbuild(); write output image using inxsearch(b,g,r)
	 */

	/*
	 * Network Definitions -------------------
	 */

	protected static final int maxnetpos = (netsize - 1);

	protected static final int netbiasshift = 4; /* bias for colour values */

	protected static final int ncycles = 100; /* no. of learning cycles */

	/* defs for freq and bias */
	protected static final int intbiasshift = 16; /* bias for fractions */

	protected static final int intbias = (((int) 1) << intbiasshift);

	protected static final int gammashift = 10; /* gamma = 1024 */

	protected static final int gamma = (((int) 1) << gammashift);

	protected static final int betashift = 10;

	protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */

	protected static final int betagamma = (intbias << (gammashift - betashift));

	/* defs for decreasing radius factor */
	protected static final int initrad = (netsize >> 3); /*
															 * for 256 cols, radius starts
															 */

	protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */

	protected static final int radiusbias = (((int) 1) << radiusbiasshift);

	protected static final int initradius = (initrad * radiusbias); /*
																	 * and decreases by a
																	 */

	protected static final int radiusdec = 30; /* factor of 1/30 each cycle */

	/* defs for decreasing alpha factor */
	protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */

	protected static final int initalpha = (((int) 1) << alphabiasshift);

	protected int alphadec; /* biased by 10 bits */

	/* radbias and alpharadbias used for radpower calculation */
	protected static final int radbiasshift = 8;

	protected static final int radbias = (((int) 1) << radbiasshift);

	protected static final int alpharadbshift = (alphabiasshift + radbiasshift);

	protected static final int alpharadbias = (((int) 1) << alpharadbshift);

	/*
	 * Types and Global Variables --------------------------
	 */

	protected byte[] thepicture; /* the input image itself */

	protected int lengthcount; /* lengthcount = H*W*3 */

	protected int samplefac; /* sampling factor 1..30 */

	// typedef int pixel[4]; /* BGRc */
	protected int[][] network; /* the network itself - [netsize][4] */

	protected int[] netindex = new int[256];

	/* for network lookup - really 256 */

	protected int[] bias = new int[netsize];

	/* bias and freq arrays for learning */
	protected int[] freq = new int[netsize];

	protected int[] radpower = new int[initrad];

	/* radpower for precomputation */

	/*
	 * Initialise network in range (0,0,0) to (255,255,255) and set parameters
	 * -----------------------------------------------------------------------
	 */
	public NeuQuant(byte[] thepic, int len, int sample) {

		int i;
		int[] p;

		thepicture = thepic;
		lengthcount = len;
		samplefac = sample;

		network = new int[netsize][];
		for (i = 0; i < netsize; i++) {
			network[i] = new int[4];
			p = network[i];
			p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
			freq[i] = intbias / netsize; /* 1/netsize */
			bias[i] = 0;
		}
	}

	public byte[] colorMap() {
		byte[] map = new byte[3 * netsize];
		int[] index = new int[netsize];
		for (int i = 0; i < netsize; i++)
			index[network[i][3]] = i;
		int k = 0;
		for (int i = 0; i < netsize; i++) {
			int j = index[i];
			map[k++] = (byte) (network[j][0]);
			map[k++] = (byte) (network[j][1]);
			map[k++] = (byte) (network[j][2]);
		}
		return map;
	}

	/*
	 * Insertion sort of network and building of netindex[0..255] (to do after unbias)
	 * -------------------------------------------------------------------------------
	 */
	public void inxbuild() {

		int i, j, smallpos, smallval;
		int[] p;
		int[] q;
		int previouscol, startpos;

		previouscol = 0;
		startpos = 0;
		for (i = 0; i < netsize; i++) {
			p = network[i];
			smallpos = i;
			smallval = p[1]; /* index on g */
			/* find smallest in i..netsize-1 */
			for (j = i + 1; j < netsize; j++) {
				q = network[j];
				if (q[1] < smallval) { /* index on g */
					smallpos = j;
					smallval = q[1]; /* index on g */
				}
			}
			q = network[smallpos];
			/* swap p (i) and q (smallpos) entries */
			if (i != smallpos) {
				j = q[0];
				q[0] = p[0];
				p[0] = j;
				j = q[1];
				q[1] = p[1];
				p[1] = j;
				j = q[2];
				q[2] = p[2];
				p[2] = j;
				j = q[3];
				q[3] = p[3];
				p[3] = j;
			}
			/* smallval entry is now in position i */
			if (smallval != previouscol) {
				netindex[previouscol] = (startpos + i) >> 1;
				for (j = previouscol + 1; j < smallval; j++)
					netindex[j] = i;
				previouscol = smallval;
				startpos = i;
			}
		}
		netindex[previouscol] = (startpos + maxnetpos) >> 1;
		for (j = previouscol + 1; j < 256; j++)
			netindex[j] = maxnetpos; /* really 256 */
	}

	/*
	 * Main Learning Loop ------------------
	 */
	public void learn() {

		int i, j, b, g, r;
		int radius, rad, alpha, step, delta, samplepixels;
		byte[] p;
		int pix, lim;

		if (lengthcount < minpicturebytes)
			samplefac = 1;
		alphadec = 30 + ((samplefac - 1) / 3);
		p = thepicture;
		pix = 0;
		lim = lengthcount;
		samplepixels = lengthcount / (3 * samplefac);
		delta = samplepixels / ncycles;
		alpha = initalpha;
		radius = initradius;

		rad = radius >> radiusbiasshift;
		if (rad <= 1)
			rad = 0;
		for (i = 0; i < rad; i++)
			radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));

		// fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);

		if (lengthcount < minpicturebytes)
			step = 3;
		else if ((lengthcount % prime1) != 0)
			step = 3 * prime1;
		else {
			if ((lengthcount % prime2) != 0)
				step = 3 * prime2;
			else {
				if ((lengthcount % prime3) != 0)
					step = 3 * prime3;
				else
					step = 3 * prime4;
			}
		}

		i = 0;
		while (i < samplepixels) {
			b = (p[pix + 0] & 0xff) << netbiasshift;
			g = (p[pix + 1] & 0xff) << netbiasshift;
			r = (p[pix + 2] & 0xff) << netbiasshift;
			j = contest(b, g, r);

			altersingle(alpha, j, b, g, r);
			if (rad != 0)
				alterneigh(rad, j, b, g, r); /* alter neighbours */

			pix += step;
			if (pix >= lim)
				pix -= lengthcount;

			i++;
			if (delta == 0)
				delta = 1;
			if (i % delta == 0) {
				alpha -= alpha / alphadec;
				radius -= radius / radiusdec;
				rad = radius >> radiusbiasshift;
				if (rad <= 1)
					rad = 0;
				for (j = 0; j < rad; j++)
					radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
			}
		}
		// fprintf(stderr,"finished 1D learning: final alpha=%f
		// !\n",((float)alpha)/initalpha);
	}

	/*
	 * Search for BGR values 0..255 (after net is unbiased) and return colour index
	 * ----------------------------------------------------------------------------
	 */
	public int map(int b, int g, int r) {

		int i, j, dist, a, bestd;
		int[] p;
		int best;

		bestd = 1000; /* biggest possible dist is 256*3 */
		best = -1;
		i = netindex[g]; /* index on g */
		j = i - 1; /* start at netindex[g] and work outwards */

		while ((i < netsize) || (j >= 0)) {
			if (i < netsize) {
				p = network[i];
				dist = p[1] - g; /* inx key */
				if (dist >= bestd)
					i = netsize; /* stop iter */
				else {
					i++;
					if (dist < 0)
						dist = -dist;
					a = p[0] - b;
					if (a < 0)
						a = -a;
					dist += a;
					if (dist < bestd) {
						a = p[2] - r;
						if (a < 0)
							a = -a;
						dist += a;
						if (dist < bestd) {
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
			if (j >= 0) {
				p = network[j];
				dist = g - p[1]; /* inx key - reverse dif */
				if (dist >= bestd)
					j = -1; /* stop iter */
				else {
					j--;
					if (dist < 0)
						dist = -dist;
					a = p[0] - b;
					if (a < 0)
						a = -a;
					dist += a;
					if (dist < bestd) {
						a = p[2] - r;
						if (a < 0)
							a = -a;
						dist += a;
						if (dist < bestd) {
							bestd = dist;
							best = p[3];
						}
					}
				}
			}
		}
		return (best);
	}

	public byte[] process() {
		learn();
		unbiasnet();
		inxbuild();
		return colorMap();
	}

	/*
	 * Unbias network to give byte values 0..255 and record position i to prepare for sort
	 * -----------------------------------------------------------------------------------
	 */
	public void unbiasnet() {

		int i;

		for (i = 0; i < netsize; i++) {
			network[i][0] >>= netbiasshift;
			network[i][1] >>= netbiasshift;
			network[i][2] >>= netbiasshift;
			network[i][3] = i; /* record colour no */
		}
	}

	/*
	 * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
	 * ---------------------------------------------------------------------------------
	 */
	protected void alterneigh(int rad, int i, int b, int g, int r) {

		int j, k, lo, hi, a, m;
		int[] p;

		lo = i - rad;
		if (lo < -1)
			lo = -1;
		hi = i + rad;
		if (hi > netsize)
			hi = netsize;

		j = i + 1;
		k = i - 1;
		m = 1;
		while ((j < hi) || (k > lo)) {
			a = radpower[m++];
			if (j < hi) {
				p = network[j++];
				try {
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				} catch (Exception e) {
				} // prevents 1.3 miscompilation
			}
			if (k > lo) {
				p = network[k--];
				try {
					p[0] -= (a * (p[0] - b)) / alpharadbias;
					p[1] -= (a * (p[1] - g)) / alpharadbias;
					p[2] -= (a * (p[2] - r)) / alpharadbias;
				} catch (Exception e) {
				}
			}
		}
	}

	/*
	 * Move neuron i towards biased (b,g,r) by factor alpha ----------------------------------------------------
	 */
	protected void altersingle(int alpha, int i, int b, int g, int r) {

		/* alter hit neuron */
		int[] n = network[i];
		n[0] -= (alpha * (n[0] - b)) / initalpha;
		n[1] -= (alpha * (n[1] - g)) / initalpha;
		n[2] -= (alpha * (n[2] - r)) / initalpha;
	}

	/*
	 * Search for biased BGR values ----------------------------
	 */
	protected int contest(int b, int g, int r) {

		/* finds closest neuron (min dist) and updates freq */
		/* finds best neuron (min dist-bias) and returns position */
		/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
		/* bias[i] = gamma*((1/netsize)-freq[i]) */

		int i, dist, a, biasdist, betafreq;
		int bestpos, bestbiaspos, bestd, bestbiasd;
		int[] n;

		bestd = ~(((int) 1) << 31);
		bestbiasd = bestd;
		bestpos = -1;
		bestbiaspos = bestpos;

		for (i = 0; i < netsize; i++) {
			n = network[i];
			dist = n[0] - b;
			if (dist < 0)
				dist = -dist;
			a = n[1] - g;
			if (a < 0)
				a = -a;
			dist += a;
			a = n[2] - r;
			if (a < 0)
				a = -a;
			dist += a;
			if (dist < bestd) {
				bestd = dist;
				bestpos = i;
			}
			biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
			if (biasdist < bestbiasd) {
				bestbiasd = biasdist;
				bestbiaspos = i;
			}
			betafreq = (freq[i] >> betashift);
			freq[i] -= betafreq;
			bias[i] += (betafreq << gammashift);
		}
		freq[bestpos] += beta;
		bias[bestpos] -= betagamma;
		return (bestbiaspos);
	}
}

// ==============================================================================
// Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
// K Weiner 12/00

class LZWEncoder {

	private static final int EOF = -1;

	private int imgW, imgH;

	private byte[] pixAry;

	private int initCodeSize;

	private int remaining;

	private int curPixel;

	// GIFCOMPR.C - GIF Image compression routines
	//
	// Lempel-Ziv compression based on 'compress'. GIF modifications by
	// David Rowley (mgardi@watdcsu.waterloo.edu)

	// General DEFINEs

	static final int BITS = 12;

	static final int HSIZE = 5003; // 80% occupancy

	// GIF Image compression - modified 'compress'
	//
	// Based on: compress.c - File compression ala IEEE Computer, June 1984.
	//
	// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
	// Jim McKie (decvax!mcvax!jim)
	// Steve Davies (decvax!vax135!petsd!peora!srd)
	// Ken Turkowski (decvax!decwrl!turtlevax!ken)
	// James A. Woods (decvax!ihnp4!ames!jaw)
	// Joe Orost (decvax!vax135!petsd!joe)

	int n_bits; // number of bits/code

	int maxbits = BITS; // user settable max # bits/code

	int maxcode; // maximum code, given n_bits

	int maxmaxcode = 1 << BITS; // should NEVER generate this code

	int[] htab = new int[HSIZE];

	int[] codetab = new int[HSIZE];

	int hsize = HSIZE; // for dynamic table sizing

	int free_ent = 0; // first unused entry

	// block compression parameters -- after all codes are used up,
	// and compression rate changes, start over.
	boolean clear_flg = false;

	// Algorithm: use open addressing double hashing (no chaining) on the
	// prefix code / next character combination. We do a variant of Knuth's
	// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
	// secondary probe. Here, the modular division first probe is gives way
	// to a faster exclusive-or manipulation. Also do block compression with
	// an adaptive reset, whereby the code table is cleared when the compression
	// ratio decreases, but after the table fills. The variable-length output
	// codes are re-sized at this point, and a special CLEAR code is generated
	// for the decompressor. Late addition: construct the table according to
	// file size for noticeable speed improvement on small files. Please direct
	// questions about this implementation to ames!jaw.

	int g_init_bits;

	int ClearCode;

	int EOFCode;

	// output
	//
	// Output the given code.
	// Inputs:
	// code: A n_bits-bit integer. If == -1, then EOF. This assumes
	// that n_bits =< wordsize - 1.
	// Outputs:
	// Outputs code to the file.
	// Assumptions:
	// Chars are 8 bits long.
	// Algorithm:
	// Maintain a BITS character long buffer (so that 8 codes will
	// fit in it exactly). Use the VAX insv instruction to insert each
	// code in turn. When the buffer fills up empty it and start over.

	int cur_accum = 0;

	int cur_bits = 0;

	int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF,
			0x7FFF, 0xFFFF };

	// Number of characters so far in this 'packet'
	int a_count;

	// Define the storage for the packet accumulator
	byte[] accum = new byte[256];

	// ----------------------------------------------------------------------------
	LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
		imgW = width;
		imgH = height;
		pixAry = pixels;
		initCodeSize = Math.max(2, color_depth);
	}

	// Add a character to the end of the current packet, and if it is 254
	// characters, flush the packet to disk.
	void char_out(byte c, OutputStream outs) throws IOException {
		accum[a_count++] = c;
		if (a_count >= 254)
			flush_char(outs);
	}

	// Clear out the hash table

	// table clear for block compress
	void cl_block(OutputStream outs) throws IOException {
		cl_hash(hsize);
		free_ent = ClearCode + 2;
		clear_flg = true;

		output(ClearCode, outs);
	}

	// reset code table
	void cl_hash(int hsize) {
		for (int i = 0; i < hsize; ++i)
			htab[i] = -1;
	}

	void compress(int init_bits, OutputStream outs) throws IOException {
		int fcode;
		int i /* = 0 */;
		int c;
		int ent;
		int disp;
		int hsize_reg;
		int hshift;

		// Set up the globals: g_init_bits - initial number of bits
		g_init_bits = init_bits;

		// Set up the necessary values
		clear_flg = false;
		n_bits = g_init_bits;
		maxcode = MAXCODE(n_bits);

		ClearCode = 1 << (init_bits - 1);
		EOFCode = ClearCode + 1;
		free_ent = ClearCode + 2;

		a_count = 0; // clear packet

		ent = nextPixel();

		hshift = 0;
		for (fcode = hsize; fcode < 65536; fcode *= 2)
			++hshift;
		hshift = 8 - hshift; // set hash code range bound

		hsize_reg = hsize;
		cl_hash(hsize_reg); // clear hash table

		output(ClearCode, outs);

		outer_loop: while ((c = nextPixel()) != EOF) {
			fcode = (c << maxbits) + ent;
			i = (c << hshift) ^ ent; // xor hashing

			if (htab[i] == fcode) {
				ent = codetab[i];
				continue;
			} else if (htab[i] >= 0) // non-empty slot
			{
				disp = hsize_reg - i; // secondary hash (after G. Knott)
				if (i == 0)
					disp = 1;
				do {
					if ((i -= disp) < 0)
						i += hsize_reg;

					if (htab[i] == fcode) {
						ent = codetab[i];
						continue outer_loop;
					}
				} while (htab[i] >= 0);
			}
			output(ent, outs);
			ent = c;
			if (free_ent < maxmaxcode) {
				codetab[i] = free_ent++; // code -> hashtable
				htab[i] = fcode;
			} else
				cl_block(outs);
		}
		// Put out the final code.
		output(ent, outs);
		output(EOFCode, outs);
	}

	// ----------------------------------------------------------------------------
	void encode(OutputStream os) throws IOException {
		os.write(initCodeSize); // write "initial code size" byte

		remaining = imgW * imgH; // reset navigation variables
		curPixel = 0;

		compress(initCodeSize + 1, os); // compress and write the pixel data

		os.write(0); // write block terminator
	}

	// Flush the packet to disk, and reset the accumulator
	void flush_char(OutputStream outs) throws IOException {
		if (a_count > 0) {
			outs.write(a_count);
			outs.write(accum, 0, a_count);
			a_count = 0;
		}
	}

	final int MAXCODE(int n_bits) {
		return (1 << n_bits) - 1;
	}

	// ----------------------------------------------------------------------------
	// Return the next pixel from the image
	// ----------------------------------------------------------------------------
	private int nextPixel() {
		if (remaining == 0)
			return EOF;

		--remaining;

		byte pix = pixAry[curPixel++];

		return pix & 0xff;
	}

	void output(int code, OutputStream outs) throws IOException {
		cur_accum &= masks[cur_bits];

		if (cur_bits > 0)
			cur_accum |= (code << cur_bits);
		else
			cur_accum = code;

		cur_bits += n_bits;

		while (cur_bits >= 8) {
			char_out((byte) (cur_accum & 0xff), outs);
			cur_accum >>= 8;
			cur_bits -= 8;
		}

		// If the next entry is going to be too big for the code size,
		// then increase it, if possible.
		if (free_ent > maxcode || clear_flg) {
			if (clear_flg) {
				maxcode = MAXCODE(n_bits = g_init_bits);
				clear_flg = false;
			} else {
				++n_bits;
				if (n_bits == maxbits)
					maxcode = maxmaxcode;
				else
					maxcode = MAXCODE(n_bits);
			}
		}

		if (code == EOFCode) {
			// At EOF, write the rest of the buffer.
			while (cur_bits > 0) {
				char_out((byte) (cur_accum & 0xff), outs);
				cur_accum >>= 8;
				cur_bits -= 8;
			}

			flush_char(outs);
		}
	}
}

 

转载于:https://my.oschina.net/u/1261213/blog/736569

分享到:
评论

相关推荐

    java图片压缩处理 支持gif

    通过理解这些概念和使用适当的库,你可以编写出能够高效、灵活地处理和压缩GIF图片的Java程序。在实际项目中,根据具体需求,还可以结合其他策略,比如使用WebP等更高效的图片格式,或者使用流式处理来减少内存占用...

    AnimatedGifEncoder.java源码(处理GIF图片)

    AnimatedGifEncoder.java源码(处理GIF图片)AnimatedGifEncoder.java源码(处理GIF图片)AnimatedGifEncoder.java源码(处理GIF图片)

    java图片压缩文件大小图片大小(支持gif动态图)

    处理GIF时,可能需要使用第三方库,如`gif4j`或`Apache Batik`,它们提供了更高级的API来处理动画序列和优化颜色表。 此外,为了实现根据指定高度进行压缩的功能,我们需要计算新的宽度,保持原图宽高比不变: ```...

    gif4j-1.0.jar(gif图片处理 java jar包)

    总的来说,`gif4j-1.0.jar`是一个强大且灵活的工具,对于需要处理GIF图像的Java开发者来说,它提供了一站式的解决方案,使得在Java环境中进行GIF图像处理变得更加简单和高效。无论是在Web应用、桌面应用还是移动应用...

    gif图片压缩(纯java实现,不依赖第三方类库)

    本话题聚焦于使用纯Java实现GIF图片的压缩,不依赖任何第三方类库。这样的实现方式对于那些需要在资源有限或者对性能有特殊要求的环境中工作的开发者来说非常有价值。 GIF(Graphics Interchange Format)是一种...

    java生成GIF图片

    以上是生成GIF图片的基本概念和关键步骤,实际开发中,你可能还需要根据具体需求调整参数,优化性能,或者添加额外的功能,如添加文字、调整色彩等。在选择第三方库时,要考虑其兼容性、文档齐全度和社区支持等因素...

    java gif图片缩放代码及帮助文档

    在Java中处理GIF图片,我们通常会使用到一些库,比如`gif4j`,这是一个轻量级且功能强大的Java库,专门用于处理GIF图像。 `gif4j`库提供了API来读取、写入、编辑和创建GIF图像。在本压缩包中的`gif4j_light_1.0.2_...

    Javacv处理视频,提取成帧图片,生成gif

    在这个项目中,我们使用 JavaCV 来处理视频,将视频帧提取为图片,并进一步生成 GIF 动画。以下是关于这个主题的详细知识点: 1. **JavaCV**: - JavaCV 是一个基于 Java 的框架,它通过 JavaCPP(Java 与 C++ 互...

    java 生成gif 图片验证码

    通过这种方式,我们可以在Java环境中生成具有动态效果的GIF图片验证码,提高系统的安全性。在实际应用中,还需要考虑验证码的过期时间、刷新机制以及与服务器端验证逻辑的配合,以确保服务的稳定性和用户友好性。

    java实现gif动画效果(java显示动态图片)

    本示例主要展示了如何在Java环境下显示动态图片,特别是GIF格式的动画。以下将详细介绍实现这一功能的关键步骤和相关知识点: 1. **使用`javax.swing.JFrame`作为基础窗口** `Donttai`类继承自`javax.swing.JFrame...

    java压缩jpg和gif图片文件

    下面是一个简单的示例,展示如何使用Java和Apache Commons Imaging来压缩JPEG和GIF图片: ```java import org.apache.commons.imaging.ImageReadException; import org.apache.commons.imaging.ImageWriteException...

    JAVA GIF图像切割

    在Java中,我们可以使用`java.awt.image`和`javax.imageio`这两个包来处理GIF图像。以下是实现GIF图像切割的基本步骤: 1. **读取GIF图像**:首先,我们需要使用`ImageIO.read()`方法从文件系统中读取GIF图像到`...

    Java图片处理工具ImageMagick

    总的来说,Java图片处理工具ImageMagick是Java开发者处理图像的强大武器,它提供了丰富的图像处理功能,能够满足各种复杂的需求。通过合理的集成和使用,可以极大地提升Java应用程序的图像处理能力。

    java生成gif

    这里我们将重点介绍`gif4j`库,因为它提供了简洁的API来创建和编辑GIF图片。 1. **安装gif4j库**:首先,你需要将`gif4j`库添加到你的项目中。如果你使用Maven,可以在`pom.xml`文件中添加以下依赖: ```xml ...

    java Swing读取图片

    在Java中,我们通常使用`ImageIcon`类的构造函数来加载图片。以下代码展示了如何从文件系统中加载图片: ```java String imagePath = "path/to/your/image.jpg"; ImageIcon imageIcon = new ImageIcon(imagePath);...

    java实现多张jgp图片转动画gif格式

    首先,我们需要一个能够处理GIF格式的库。Apache Commons的`IO`和`Lang`库以及`gif4j`库是常用的选项。在这个例子中,我们将重点放在使用`gif4j`库上,因为它提供了方便的API来创建和编辑GIF文件。 1. **安装gif4j...

    java gif动画转png

    Java作为一种广泛使用的编程语言,提供了丰富的库和工具来处理各种图像格式,包括GIF和PNG。本篇文章将详细探讨如何使用Java将GIF动画转换为PNG图片,以便进行后续的编辑和使用。 首先,我们需要了解GIF和PNG两种...

    java 合成 gif

    在Java中,我们可以使用`java.awt.image`和`javax.imageio`这两个包来处理图像。这两个包提供了读取、写入、操作图像的方法。例如,`BufferedImage`类用于存储图像数据,`ImageIO`类提供读取和写入不同图像格式的...

    爬取gif动态图的程序,java实现

    本项目是关于使用Java语言结合Jsoup库来爬取并下载GIF动态图,非常适合初学者入门。以下将详细讲解这一技术及其相关知识点。 首先,Jsoup是一个Java库,它提供了非常方便的API,用于解析HTML文档。其主要功能包括...

    java处理GIF文件格式时进行相关分析的类

    有了以上对图象的基本处理之后,我们再来看看对动态GIF图片的处理。 GIF是一种由CompuServe创建的压缩和传送图像文件的格式。 GIF图像是基于颜色列表的(存储的数据是该点的颜色对应于颜色列表的索引值),最多只...

Global site tag (gtag.js) - Google Analytics