- 浏览: 415547 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
yzpniceboy:
楼主,我现在使用的mule,已经集成了spring和hiber ...
Mule+Spring+jbpm -
sztiger168:
建议大家深入学习:什么是集成产品开发(IPD),如何在公司内推 ...
集成产品开发(IPD)理论学习心得(1) -
zouruixin:
synchronized
并发,并发 -
anttu:
并发,并发 -
courage207:
最近也在研究,我还会研究一些大数据量处理,会陆续更新
并发,并发
Teradata and Data Warehouse Architectures
1 Teradata and Data Warehouse Architectures<o:p></o:p>
1.1 Evolution to Active Data Warehousing
1.1.1 Data Warehouse Usage Evolution
There is an information evolution happening in the data warehouse environ<st1:rtx w:st="on">me</st1:rtx>nt today. Changing business require<st1:rtx w:st="on">me</st1:rtx>nts have placed demands on data warehousing technology to do more things faster. Data warehouses have moved from back room strategic decision support systems to operational, business-critical components of the enterprise. As your company evolves in its use of the data warehouse, what you need from the data warehouse evolves, too.
<v:shapetype o:spt="75" coordsize="21600,21600" stroked="f" id="_x0000_t75" filled="f" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" o:extrusionok="f" o:connecttype="rect"></v:path><o:lock v:ext="edit" aspectratio="t"></o:lock></v:shapetype><v:shape type="#_x0000_t75" id="_x0000_i1025" alt="" style="WIDTH: 408pt; HEIGHT: 189pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/Mod3-dwevolution.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image001.png"></v:imagedata></v:shape>
Stage 1 Reporting: The initial stage typical<st1:rtx w:st="on">ly</st1:rtx> focuses on reporting from a single source of truth to drive decision-making across functional and/or product boundaries. Questions are usual<st1:rtx w:st="on">ly</st1:rtx> known in advance, such as a week<st1:rtx w:st="on">ly</st1:rtx> sales report.
Stage 2 Ana<st1:rtx w:st="on">ly</st1:rtx>zing: Focus on why so<st1:rtx w:st="on">me</st1:rtx>thing happened, such as why sales went down or discovering patterns in custo<st1:rtx w:st="on">me</st1:rtx>r buying habits. Users perform ad-hoc ana<st1:rtx w:st="on">ly</st1:rtx>sis, slicing and dicing the data at a detail level, and questions are not known in advance.
Stage 3 Predicting: Sophisticated ana<st1:rtx w:st="on">ly</st1:rtx>sts heavi<st1:rtx w:st="on">ly</st1:rtx> utilize the system to leverage information to predict what will happen next in the business to proactive<st1:rtx w:st="on">ly</st1:rtx> manage the organization's strategy. This stage requires data mining tools and building predictive models using historical detail. As an example, users can model custo<st1:rtx w:st="on">me</st1:rtx>r demographics for target marketing.
Stage 4 Operationalizing: Providing access to information for im<st1:rtx w:st="on">me</st1:rtx>diate decision-making in the field enters the realm of active data warehousing. Stages 1 to 3 focus on strategic decision-making within an organization. Stage 4 focuses on tactical decision support.. Tactical decision support is not focused on developing corporate strategy, but rather on supporting the people in the field who execute it. Examples: 1) Inventory manage<st1:rtx w:st="on">me</st1:rtx>nt with just-in-ti<st1:rtx w:st="on">me</st1:rtx> replenish<st1:rtx w:st="on">me</st1:rtx>nt, 2) Scheduling and routing for package delivery. 3) Altering a campaign based on current results.
Stage 5 Active Warehousing: The larger the role an ADW plays in the operational aspects of decision support, the more incentive the business has to automate the decision processes. You can automate decision-making when a custo<st1:rtx w:st="on">me</st1:rtx>r interacts with a web site. Interactive custo<st1:rtx w:st="on">me</st1:rtx>r relationship manage<st1:rtx w:st="on">me</st1:rtx>nt (CRM) on a web site or at an ATM is about making decisions to optimize the custo<st1:rtx w:st="on">me</st1:rtx>r relationship through individualized product offers, pricing, content delivery and so on. As technology evolves, more and more decisions beco<st1:rtx w:st="on">me</st1:rtx> executed with event-driven triggers to initiate ful<st1:rtx w:st="on">ly</st1:rtx> automated decision processes. Example: determine the best offer for a specific custo<st1:rtx w:st="on">me</st1:rtx>r based on a real-ti<st1:rtx w:st="on">me</st1:rtx> event, such as a significant ATM deposit.
1.1.2 Active Data Warehouse
Data warehouses are beginning to take on mission-critical roles supporting CRM, one-to-one marketing, and minute-to-minute decision-making. Data warehousing require<st1:rtx w:st="on">me</st1:rtx>nts have evolved to demand a decision capability that is not just oriented toward corporate staff and upper manage<st1:rtx w:st="on">me</st1:rtx>nt, but actionable on a day-to-day basis. Decisions such as when to replenish Barbie dolls at a particular retail outlet may not be strategic at the level of custo<st1:rtx w:st="on">me</st1:rtx>r seg<st1:rtx w:st="on">me</st1:rtx>ntation or long-term pricing strategies, but when executed proper<st1:rtx w:st="on">ly</st1:rtx>, they make a big difference to the bottom line. We refer to this capability as "tactical" decision support. <o:p></o:p>
Tactical decisions are the drivers for day-to-day manage<st1:rtx w:st="on">me</st1:rtx>nt of the business. Businesses today want more than just strategic insight from their data warehouse imple<st1:rtx w:st="on">me</st1:rtx>ntations-they want better execution in running the business through more effective use of information for the decisions that get made thousands of ti<st1:rtx w:st="on">me</st1:rtx>s per day. <o:p></o:p>
The origin of the active data warehouse is the ti<st1:rtx w:st="on">me</st1:rtx><st1:rtx w:st="on">ly</st1:rtx>, integrated store of detail data available for ana<st1:rtx w:st="on">ly</st1:rtx>tic business decision-making. It is on<st1:rtx w:st="on">ly</st1:rtx> from that source that the additional traits needed by the active data warehouse can evolve. These new "active" traits are supple<st1:rtx w:st="on">me</st1:rtx>ntal to data warehouse functionality. For example, the work mix in the database still includes complex decision support queries, but expands to take on short, tactical queries, background data feeds, and possib<st1:rtx w:st="on">ly</st1:rtx> event-driven updates all at the sa<st1:rtx w:st="on">me</st1:rtx> ti<st1:rtx w:st="on">me</st1:rtx>. Data volu<st1:rtx w:st="on">me</st1:rtx>s and user concurrency levels may explode upward beyond expectation. Restraints may need to be placed on the longer, ana<st1:rtx w:st="on">ly</st1:rtx>tical queries in order to guarantee tactical work throughput. While accessing the detail data direct<st1:rtx w:st="on">ly</st1:rtx> remains an important opportunity for ana<st1:rtx w:st="on">ly</st1:rtx>tical work, tactical work may thrive on shortcuts and summaries, such as operational data store (ODS) level information. And for both strategic and tactical decisions to be useful to the business, today's data, this hour's data, even this minute's data has to be at hand.<o:p></o:p>
Teradata is positioned exceptional<st1:rtx w:st="on">ly</st1:rtx> well for stepping up to the challenges related to high availability, large multi-user workloads, and handling complex queries that are required for an active data warehouse imple<st1:rtx w:st="on">me</st1:rtx>ntation. Teradata technology supports the evolving business require<st1:rtx w:st="on">me</st1:rtx>nts by providing high performance and scalability for: <o:p></o:p>
- Mixed workloads (both tactical and strategic queries) for mission critical applications <o:p></o:p>
- Large amounts of detail data <o:p></o:p>
- Concurrent users <o:p></o:p>
Teradata provides 7x24 availability and reliability, as well as continuous updating of information so data is always fresh and accurate.<o:p></o:p>
1.1.3 Evolution of Data Processing
Traditional<st1:rtx w:st="on">ly</st1:rtx>, data processing has been divided into two categories: on-line transaction processing (OLTP) and decision support systems (DSS). For either, requests are handled as transactions. A transaction is a logical unit of work, such as a request to update an account. <o:p></o:p>
An RDBMS is used in the following main processing environ<st1:rtx w:st="on">me</st1:rtx>nts: <o:p></o:p>
- DSS <o:p></o:p>
- OLTP <o:p></o:p>
- OLAP <o:p></o:p>
Decision Support Systems (DSS)
In a decision support environ<st1:rtx w:st="on">me</st1:rtx>nt, users submit requests to anaylze historical detail data stored in the tables. The results are used to establish strategies, reveal trends, and make projections. A database used as a decision support system (DSS) usual<st1:rtx w:st="on">ly</st1:rtx> receives fewer, very complex, ad-hoc queries and may involve nu<st1:rtx w:st="on">me</st1:rtx>rous tables. Decision support systems include batch reports, which roll-up numbers to give business the big picture, and over ti<st1:rtx w:st="on">me</st1:rtx>, have evolved: <o:p></o:p>
- Instead of pre-written scripts, users now require the ability to do ad-hoc queries, which are unpredictable in their processing and which allow "what if " types of questions. These types of questions are essential for long range planning. <o:p></o:p>
- DSS systems are able to read through huge volu<st1:rtx w:st="on">me</st1:rtx>s of data. DSS is an area where Teradata has traditional<st1:rtx w:st="on">ly</st1:rtx> excelled with its parallel architecture. <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1026" alt="" style="WIDTH: 284.25pt; HEIGHT: 96pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/ds.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image003.gif"></v:imagedata></v:shape><o:p></o:p>
On-line Transaction Processing (OLTP)
Unlike the DSS environ<st1:rtx w:st="on">me</st1:rtx>nt, an on-line transaction processing (OLTP) environ<st1:rtx w:st="on">me</st1:rtx>nt typical<st1:rtx w:st="on">ly</st1:rtx> has users accessing current data to update, insert, and delete rows in the data tables. OLTP is typified by a small number of rows (or records) or a few of many possible tables being accessed in a matter of seconds or less. Very little I/O processing is required to complete the transaction. This type of transaction takes place when we take out money at an ATM. Once our card is validated, a debit transaction takes place a<st1:rtx w:st="on">gai</st1:rtx>nst our current balance to reflect the amount of cash withdrawn. This type of transaction also takes place when we deposit money into a checking account and the balance gets updated. We expect these transactions to be perfor<st1:rtx w:st="on">me</st1:rtx>d quick<st1:rtx w:st="on">ly</st1:rtx>. They must occur in real ti<st1:rtx w:st="on">me</st1:rtx>.
<v:shape type="#_x0000_t75" id="_x0000_i1027" alt="" style="WIDTH: 318pt; HEIGHT: 61.5pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/tp.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image004.gif"></v:imagedata></v:shape><o:p></o:p>
On-line Ana<st1:rtx w:st="on">ly</st1:rtx>tical Processing (OLAP)
OLAP is the kind of processing that takes place in many data warehouses or data marts. Here, the user may be looking for historical trends, sales rankings or seasonal inventory fluctuations for the entire corporation. Usual<st1:rtx w:st="on">ly</st1:rtx>, this involves a lot of detail data to be retrieved, processed and ana<st1:rtx w:st="on">ly</st1:rtx>zed. Therefore, response ti<st1:rtx w:st="on">me</st1:rtx> can be in seconds or minutes. In the most sophisticated OLAP systems, the systems will make automated purchasing or inventory decisions without any human intervention. <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1028" alt="" style="WIDTH: 389.25pt; HEIGHT: 261.75pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/Mod3-evolutiondp.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image005.gif"></v:imagedata></v:shape><o:p></o:p>
1.1.4 Advantages of Using Summary Data
Until recent<st1:rtx w:st="on">ly</st1:rtx>, most business decisions were based on summary data. The problem is that summarized data is not as useful as detail data and cannot answer so<st1:rtx w:st="on">me</st1:rtx> questions with accuracy. With summarized data, peaks and valleys are leveled when the peaks fall at the end of reporting period and are cut in half. <o:p></o:p>
Here's another example. Think of your month<st1:rtx w:st="on">ly</st1:rtx> bank state<st1:rtx w:st="on">me</st1:rtx>nt that records checking account activity. If it on<st1:rtx w:st="on">ly</st1:rtx> told you the total amount of deposits and withdrawals, would you be able to tell if a certain check had cleared? To answer that question you need a list of every check received by your bank. You need detail data. <o:p></o:p>
Decision support-answering business questions-is the real purpose of databases. To answer business questions, decision-makers must have four things: <o:p></o:p>
- The right data <o:p></o:p>
- Enough detail data <o:p></o:p>
- Proper data structure <o:p></o:p>
- Enough computer power to access and produce reports on the data <o:p></o:p>
Consider your own business and how it uses data. Is that data detailed or summarized? If it's summarized, are there questions it cannot answer?<o:p></o:p>
1.2 The Data Warehouse
A data warehouse is a central, enterprise-wide database that contains information extracted from the operational systems. Data warehouses have beco<st1:rtx w:st="on">me</st1:rtx> more common in corporations where enterprise-wide detail data may be used in on-line ana<st1:rtx w:st="on">ly</st1:rtx>tical processing to make strategic and tactical business decisions. Warehouses often carry many years worth of detail data so that historical trends may be ana<st1:rtx w:st="on">ly</st1:rtx>zed using the full power of the data.
Many data warehouses get their data direct<st1:rtx w:st="on">ly</st1:rtx> from operational systems so that the data is ti<st1:rtx w:st="on">me</st1:rtx><st1:rtx w:st="on">ly</st1:rtx> and accurate. While data warehouses may begin so<st1:rtx w:st="on">me</st1:rtx>what small in scope and purpose, they often grow quite large as their utility beco<st1:rtx w:st="on">me</st1:rtx>s more ful<st1:rtx w:st="on">ly</st1:rtx> exploited by the enterprise.
Data Warehousing is a process, not a product. It is a technique to proper<st1:rtx w:st="on">ly</st1:rtx> assemble and manage data from various sources to answer business questions not previous<st1:rtx w:st="on">ly</st1:rtx> possible or known.
<v:shape type="#_x0000_t75" id="_x0000_i1029" style="WIDTH: 307.5pt; HEIGHT: 261pt"><v:imagedata src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image006.png" o:title=""></v:imagedata></v:shape>
1.3 Data Marts
A data mart is a special purpose subset of enterprise data used by a particular depart<st1:rtx w:st="on">me</st1:rtx>nt, function or application. Data marts may have both summary and detail data for a particular use rather than for general use. Usual<st1:rtx w:st="on">ly</st1:rtx> the data has been pre-aggregated or transfor<st1:rtx w:st="on">me</st1:rtx>d in so<st1:rtx w:st="on">me</st1:rtx> way to better handle the particular type of requests of a specific user community.
Independent Data Marts
Independent data marts are created direct<st1:rtx w:st="on">ly</st1:rtx> from operational systems, just as is a data warehouse. In the data mart, the data is usual<st1:rtx w:st="on">ly</st1:rtx> transfor<st1:rtx w:st="on">me</st1:rtx>d as part of the load process. Data might be aggregated, di<st1:rtx w:st="on">me</st1:rtx>nsionalized or summarized historical<st1:rtx w:st="on">ly</st1:rtx>, as the require<st1:rtx w:st="on">me</st1:rtx>nts of the data mart dictate.
Logical Data Marts
Logical data marts are not separate physical structures or a data load from a data warehouse, but rather are an existing part of the data warehouse. Because in theory the data warehouse contains the detail data of the entire enterprise, a logical view of the warehouse might provide the specific information for a given user community, much as a physical data mart would. Without the proper technology, a logical data mart can be a slow and frustrating experience for end users. With the proper technology, it removes the need for massive data loading and transforming, making a single data store available for all user needs.
Dependent Data Marts
Dependent data marts are created from the detail data in the data warehouse. While having many of the advantages of the logical data mart, this approach still requires the move<st1:rtx w:st="on">me</st1:rtx>nt and transformation of data but may provide a better vehicle for performance-critical user queries.
<v:shape type="#_x0000_t75" id="_x0000_i1030" alt="" style="WIDTH: 352.5pt; HEIGHT: 186pt"><v:imagedata src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image008.gif" o:title="Mod3-dm"></v:imagedata></v:shape>
1.4 Data Mart Pros and Cons
Independent Data Marts
Independent data marts are usual<st1:rtx w:st="on">ly</st1:rtx> the easiest and fastest to imple<st1:rtx w:st="on">me</st1:rtx>nt and their payback value can be almost im<st1:rtx w:st="on">me</st1:rtx>diate. So<st1:rtx w:st="on">me</st1:rtx> corporations start with several data marts before deciding to build a true data warehouse. This approach has several inherent problems: <o:p></o:p>
- While data marts have obvious value, they are not a true enterprise-wide solution and can beco<st1:rtx w:st="on">me</st1:rtx> very cost<st1:rtx w:st="on">ly</st1:rtx> over ti<st1:rtx w:st="on">me</st1:rtx> as more and more are added. <o:p></o:p>
- A major problem with proliferating data marts is that, depending on where you look for answers, there is often more than one version of the truth. <o:p></o:p>
- They do not provide the historical depth of a true data warehouse. <o:p></o:p>
- Because data marts are designed to handle specific types of queries from a specific type of user, they are often not good at "what if" queries like a data warehouse would be. <o:p></o:p>
Logical Data Marts
Logical data marts overco<st1:rtx w:st="on">me</st1:rtx> most of the limitations of independent data marts. They provide a single version of the truth. There is no historical limit to the data and "what if" querying is entire<st1:rtx w:st="on">ly</st1:rtx> feasible. The major drawback to logical data marts is the lack of physical control over the data. Because data in the warehouse in not pre-aggregated or di<st1:rtx w:st="on">me</st1:rtx>nsionalized, performance a<st1:rtx w:st="on">gai</st1:rtx>nst the logical mart will not usual<st1:rtx w:st="on">ly</st1:rtx> be as good as a<st1:rtx w:st="on">gai</st1:rtx>nst an independent mart. However, use of parallelism in the logical mart can overco<st1:rtx w:st="on">me</st1:rtx> so<st1:rtx w:st="on">me</st1:rtx> of the limitations of the non-transfor<st1:rtx w:st="on">me</st1:rtx>d data.<o:p></o:p>
Dependent Data Marts
Dependent data marts provide all advantages of a logical mart and also allow for physical control of the data as it is extracted from the data warehouse. Because dependent marts use the warehouse as their foundation, they are general<st1:rtx w:st="on">ly</st1:rtx> considered a better solution than independent marts, but they take longer and are more expensive to imple<st1:rtx w:st="on">me</st1:rtx>nt. <v:shape type="#_x0000_t75" id="_x0000_i1031" alt="" style="WIDTH: 476.25pt; HEIGHT: 275.25pt"><v:imagedata src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image009.gif" o:title="Mod3-dmprocon"></v:imagedata></v:shape><o:p></o:p>
1.5 A Teradata System
A Teradata system contains one or more nodes. A node is a term for a processing unit under the control of a single operating system. The node is where the processing occurs for the Teradata Database. There are two types of Teradata systems: <o:p></o:p>
- Sym<st1:rtx w:st="on">me</st1:rtx>tric multiprocessing (SMP) - An SMP Teradata system has a single node that contains multiple CPUs sharing a <st1:rtx w:st="on">me</st1:rtx>mory pool. <o:p></o:p>
- Massive<st1:rtx w:st="on">ly</st1:rtx> parallel processing (MPP) - Multiple SMP nodes working together comprise a larger, MPP imple<st1:rtx w:st="on">me</st1:rtx>ntation of Teradata. The nodes are connected using the BYNET, which allows multiple virtual processors on multiple nodes to communicate with each other. <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1032" alt="" style="WIDTH: 375pt; HEIGHT: 157.5pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/smp_mpp.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image010.gif"></v:imagedata></v:shape><o:p></o:p>
To manage a Teradata system, you use: <o:p></o:p>
- SMP system: System Console (keyboard and monitor) attached direct<st1:rtx w:st="on">ly</st1:rtx> to the SMP node <o:p></o:p>
- MPP system: Administration Workstation (AWS) <o:p></o:p>
To access a Teradata system, a user typical<st1:rtx w:st="on">ly</st1:rtx> logs on through one of multiple client platforms (channel-attached mainfra<st1:rtx w:st="on">me</st1:rtx>s or network-attached workstations). Client access is discussed in the next module.<o:p></o:p>
1.6 Node Components
A node is a basic building block of a Teradata system, and contains a large number of hardware and software components. A conceptual diagram of a node and its major components is shown below. Hardware components are shown on the left side of the node and software components are shown on the right side.
<o:p> </o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1033" alt="" style="WIDTH: 291pt; HEIGHT: 225pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/node.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image011.gif"></v:imagedata></v:shape>
1.7 Shared Nothing Architecture
The Teradata vprocs (which are the PEs and AMPs) share the components of the nodes (<st1:rtx w:st="on">me</st1:rtx>mory and cpu). The main component of the "shared-nothing" architecture is that each AMP manages its own dedicated portion of the system's disk space (called the vdisk) and this space is not shared with other AMPs. Each AMP uses system resources independent<st1:rtx w:st="on">ly</st1:rtx> of the other AMPs so they can all work in parallel for high system performance overall.
1.8 Using the BYNET
The BYNET (pronounced, "bye-net") is a high-speed interconnect (network) that enables multiple nodes in the system to communicate. It has several unique features: <o:p></o:p>
- Scalable: As you add more nodes to the system, the overall network bandwidth scales linear<st1:rtx w:st="on">ly</st1:rtx>. This linear scalability <st1:rtx w:st="on">me</st1:rtx>ans you can increase system size without performance penalty -- and so<st1:rtx w:st="on">me</st1:rtx>ti<st1:rtx w:st="on">me</st1:rtx>s even increase performance. <o:p></o:p>
- High performance: An MPP system typical<st1:rtx w:st="on">ly</st1:rtx> has two BYNET networks (BYNET 0 and BYNET 1). Because both networks in a system are active, the system benefits from having full use of the aggregate bandwidth of both the networks. <o:p></o:p>
- Fault tolerant: Each network has multiple connection paths. If the BYNET detects an unusable path in either network, it will automatical<st1:rtx w:st="on">ly</st1:rtx> reconfigure that network so all <st1:rtx w:st="on">me</st1:rtx>ssages avoid the unusable path. Additional<st1:rtx w:st="on">ly</st1:rtx>, in the rare case that BYNET 0 cannot be reconfigured, hardware on BYNET 0 is disabled and <st1:rtx w:st="on">me</st1:rtx>ssages are re-routed to BYNET 1. <o:p></o:p>
- Load balanced: Traffic is automatical<st1:rtx w:st="on">ly</st1:rtx> and dynamical<st1:rtx w:st="on">ly</st1:rtx> distributed between both BYNETs. <o:p></o:p>
1.9 BYNET Hardware and Software
The BYNET hardware and software handle the communication between the vprocs and the nodes. <o:p></o:p>
- Hardware: The nodes of an MPP system are connected with the BYNET hardware, consisting of BYNET boards and cables. <o:p></o:p>
- Software: The BYNET software is installed on every node. This BYNET driver is an interface between the PDE software and the BYNET hardware.
SMP systems do not contain BYNET hardware. The PDE and BYNET software emulate BYNET activity in a single-node environ<st1:rtx w:st="on">me</st1:rtx>nt. The SMP imple<st1:rtx w:st="on">me</st1:rtx>ntation is so<st1:rtx w:st="on">me</st1:rtx>ti<st1:rtx w:st="on">me</st1:rtx>s called "boardless BYNET." <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1034" alt="" style="WIDTH: 267pt; HEIGHT: 143.25pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/bynethsw.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image012.gif"></v:imagedata></v:shape><o:p></o:p>
1.10 Communication Between Nodes
The BYNET hardware can carry the following types of <st1:rtx w:st="on">me</st1:rtx>ssages between nodes: <o:p></o:p>
- Broadcast <st1:rtx w:st="on">me</st1:rtx>ssage to all nodes <o:p></o:p>
- Point-to-point <st1:rtx w:st="on">me</st1:rtx>ssage from one node to another node <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1035" alt="" style="WIDTH: 262.5pt; HEIGHT: 140.25pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/bynet_communication.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image013.gif"></v:imagedata></v:shape><o:p></o:p>
1.11 Communication Between Vprocs
On an MPP system, BYNET hardware is used to first send the communication across nodes (using either the point-to-point or broadcast <st1:rtx w:st="on">me</st1:rtx>ssaging described previous<st1:rtx w:st="on">ly</st1:rtx>). <o:p></o:p>
On an SMP system, this first step is unnecessary since there is on<st1:rtx w:st="on">ly</st1:rtx> one node. <o:p></o:p>
Once a node receives a communication, vproc communication within the node is done by the PDE and BYNET software using the following types of <st1:rtx w:st="on">me</st1:rtx>ssaging:. <o:p></o:p>
- Point-to-point <o:p></o:p>
- Multicast <o:p></o:p>
- Broadcast <o:p></o:p>
Point-to-Point <st1:rtx w:st="on">Me</st1:rtx>ssages <o:p></o:p>
With point-to-point <st1:rtx w:st="on">me</st1:rtx>ssaging between vprocs, a vproc can send a <st1:rtx w:st="on">me</st1:rtx>ssage to another vproc on: <o:p></o:p>
- The sa<st1:rtx w:st="on">me</st1:rtx> node (using PDE and BYNET software) <o:p></o:p>
- A different node using two steps: <o:p></o:p>
- Send a point-to-point <st1:rtx w:st="on">me</st1:rtx>ssage from the sending node to the node containing the recipient vproc. This is a communication between nodes using the BYNET hardware. <o:p></o:p>
- Within the recipient node, the <st1:rtx w:st="on">me</st1:rtx>ssage is sent to the recipient vproc. This is a point-to-point communication between vprocs using the PDE and BYNET software. <o:p></o:p>
Point-to-Point <st1:rtx w:st="on">Me</st1:rtx>ssage on the Sa<st1:rtx w:st="on">me</st1:rtx> Node<o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1036" alt="" style="WIDTH: 262.5pt; HEIGHT: 140.25pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/bynet_point1.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image014.gif"></v:imagedata></v:shape><o:p></o:p>
Point-to-Point <st1:rtx w:st="on">Me</st1:rtx>ssage on a Different Node <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1037" alt="" style="WIDTH: 262.5pt; HEIGHT: 140.25pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/bynet_point2.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image015.gif"></v:imagedata></v:shape><o:p></o:p>
Multicast <st1:rtx w:st="on">Me</st1:rtx>ssages <o:p></o:p>
A vproc can send a <st1:rtx w:st="on">me</st1:rtx>ssage to multiple vprocs using two steps: <o:p></o:p>
- Send a broadcast <st1:rtx w:st="on">me</st1:rtx>ssage from the sending node to all nodes. This is a communication between nodes using the BYNET hardware. <o:p></o:p>
- Within the recipient nodes, the PDE and BYNET software determine which, if any, of its vprocs should receive the <st1:rtx w:st="on">me</st1:rtx>ssage and delivers the <st1:rtx w:st="on">me</st1:rtx>ssage according<st1:rtx w:st="on">ly</st1:rtx>. This is a multicast communication between vprocs within the node, using the PDE and BYNET software. <o:p></o:p>
<v:shape type="#_x0000_t75" id="_x0000_i1038" alt="" style="WIDTH: 262.5pt; HEIGHT: 140.25pt"><v:imagedata o:href="teradata考试资料/Basic/Basic/Untitled/bynet_multicast.gif" src="file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\msohtml1\01\clip_image016.gif"></v:imagedata></v:shape><o:p></o:p>
Broadcast <st1:rtx w:st="on">Me</st1:rtx>ssages <o:p></o:p>
A vproc can send a <st1:rtx w:st="on">me</st1:rtx>ssage to all the vprocs in the system using two steps: <o:p></o:p>
相关推荐
这个压缩包“NCR-Teradata-Data-Warehouse.zip”包含了对Teradata数据仓库深入研究的相关文档,让我们来详细探讨Teradata数据仓库的核心知识点。 首先,Teradata的数据仓库架构基于MPP(大规模并行处理)概念,这...
teradata warehouse minerteradata warehouse minerteradata warehouse minerteradata warehouse minerteradata warehouse minerteradata warehouse minerteradata warehouse miner
Teradata Warehouse 8.0 包括Teradata Database V2R6.0、Teradata Tools and Utilities 8.0以及NCR 5380服务器,同时提供了Teradata应用、合作伙伴应用和全球咨询服务。Teradata全球咨询服务更新了其数据仓库方法论...
Teradata数据仓库(Enterprise Data Warehouse,简称EDW)是一种高性能的数据管理和分析平台,能够处理大规模的数据集,并提供快速的数据查询能力。Teradata的数据仓库系统以其卓越的性能、可扩展性和可靠性而著称,在...
总结来说,文档《Teradata Travel and Hospitality Industry Data Model》提供了关于Teradata旅游和酒店行业数据模型的详细知识,说明了这个模型如何帮助相关行业的组织快速获得业务的宏观理解,并通过标准化的数据...
Teradata Data Dictionary 是 Teradata 数据库系统中的一个关键组件,用于存储关于数据库对象的所有元数据信息。这些信息包括但不限于表定义、索引定义、用户权限等。通过维护这些元数据,Data Dictionary 为数据库...
《Auerbach Building and Maintaining a Data Warehouse》是2008年出版的一本关于数据仓库建设与维护的专业书籍,由Auerbach Publications发行。这本书深入探讨了数据仓库的理论与实践,为读者提供了构建和管理高效...
Teradata基于强大的事件监测功能和整合的商务智能建立起来的业务应用和业务流程,在一个集中的数据仓库中实现了数据挖掘和数据质量分析的流程化操作,能够深入全面地浏览数据,可以更快、更准确地帮助企业成功地进行...
文档标题“Teradata Vantage JSON Data Type.pdf”暗示了文档中涉及的核心主题是关于在Teradata Vantage平台上JSON数据类型的使用和操作。从描述部分可以看出,文档是针对Vantage系统的16.20版本,并在2019年3月发布...
- **Teradata Active Enterprise Data Warehouse**:为企业提供实时数据仓库服务,满足实时分析需求。 3. **Teradata学习资源** - "Teradata 数据库特点及产品-20101102.pdf":这份文档可能详细介绍了2010年版本...
在给定的部分内容中,我们看到了Teradata Database SQL Reference for Data Manipulation Statements Release 12.0,这表明文档主要聚焦于Teradata 12.0版本中SQL语句的数据操作部分。下面,我们将深入探讨Teradata...
Teradata数据库是一款高性能、大规模并行处理(MPP)的关系型数据库管理系统,广泛应用于企业级数据仓库和大数据分析。在“teradata数据库学习资料”这个主题中,我们可以通过提供的资源深入理解Teradata的核心概念...
CCB(可能是某个具体项目的缩写)DW(Data Warehouse)的逻辑结构可能涉及数据仓库的分层设计,如星型、雪花型或星座型模型,以支持高效的数据分析和报告。具体细节未在当前资料中给出,通常包括事实表、维度表以及...
根据给定的文件信息,我们可以了解到Teradata Vantage系统中SQL数据定义语言(DDL)的一些详细主题。文件标题指明了这份文档涵盖了Teradata Vantage SQL DDL的详细内容,版本为16.20,发布日期为2019年3月。这份文件...
在安装Teradata Tools and Utilities过程中,我们需要选择Custom安装选项,然后点击"Select All",并将WebSphere?Access Module for Teradata模块去掉。这样可以避免Teradata Tools and Utilities的安装失败。 安装...
1. 数据仓库(Data Warehouse):用于存储和管理大量数据,支持数据分析和报表生成。 2. 商业智能(Business Intelligence):用于分析和报表生成,支持业务决策。 3. 客户关系管理(Customer Relationship ...
Teradata Cookbook Over 85 recipes to implement efficient data warehousing solutions 英文epub 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书