一,消息处理机制,主要涉及到类有HandlerThread、Handler、Looper、MessageQueue、Message
- Message在这里面代表一个消息实体对象
- MessageQueue主要用来存放消息实体的队列
- Looper主要用来监听MessageQueue的消息,他存放于ThreadLocal中
- Handler主要用来处理消息的发送,以及响应消息的业务处理
- HandlerThread是一个单独的线程,可与Looper整合,实现一个完全独立的消息处理机制
二,对应类方法的UML图
三,对应类的具体实现描述
-
HandlerThead
操作整个消息机制的demo,
-
HandlerThead
//创建一个新的线程,在创建线程时,已经初始化了Looper HandlerThread handlerThread= new HandlerThread("looper test" ); handlerThread.start(); Handler handler= new Handler(handlerThread.getLooper()){ @Override public void handleMessage(Message msg) { Log. d("loop mes exec", "loop mes exec"); } }; handler.sendMessage(Message. obtain()); handler.sendMessage(Message. obtain()); handler.sendMessage(Message. obtain()); handler.sendMessage(Message. obtain()); handler.sendMessage(Message. obtain()); try { Thread. sleep(50000L); } catch (InterruptedException e) { e.printStackTrace(); } //自己创建的也要关掉 handlerThread.quit();2, Looper(相对于线程独立,因为是放在ThreadLocal存放)
a)Looper中提供的prepareMainLooper()专门为UI主线程提供,在平常方法调用时不应该用 此方法,可查看ActivityThread#main()源码
b)在使用Looper处理消息机制时,首先通过Looper.perpare()创建一个Looper对象,并将他存 储 在对应的sThreadLocal之中.
/** Initialize the current thread as a looper. * This gives you a chance to create handlers that then reference * this looper, before actually starting the loop. Be sure to call * {@link #loop()} after calling this method, and end it by calling * {@link #quit()}. */ public static void prepare () { prepare(true); } private static void prepare( boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException( "Only one Looper may be created per thread"); } sThreadLocal.set( new Looper(quitAllowed)); }c)然后通过Looper.loop()进行循环监听,等待MessageQueuee队列里面的消息
public static void loop () { final Looper me = myLooper(); if (me == null) { throw new RuntimeException( "No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me. mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder. clearCallingIdentity(); for (;;) { //查看下面对MessageQueue的详解, Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } //对消息进行处理 msg.target.dispatchMessage(msg); //消息回收 msg.recycle(); } }3,Handler
a)Handler以sendMessage(Message msg)发送消息,最终会把消息扔入 MessageQueue
private boolean enqueueMessage (MessageQueue queue, Message msg, long uptimeMillis) { msg. target = this; if (mAsynchronous) { msg.setAsynchronous( true); } return queue.enqueueMessage(msg, uptimeMillis); }--->MessageQueue.enqueueMessage(...),把消息扔给队列
b)看Looper中的msg.target.dispatchMessage(msg)对得到的消息进行处理
4,MessageQueue
这个类中主要的两个方法一个是发送消息时处理的方法enqueueMessae(...)一个是 Looper.loop()中处理消息时处理的next()
public class MessageQueue { // True if the message queue can be quit. private final boolean mQuitAllowed; @SuppressWarnings( "unused") private int mPtr; // used by native code //消息是以链状形式存储,这个是顶级消息 Message mMessages; //见名思义,主要是用于next()方法中,空闲时处理 private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>(); private IdleHandler[] mPendingIdleHandlers; private boolean mQuiting; // 在next()方法中对是否阻塞判断,当有消息在处理时mBlocked=false private boolean mBlocked; // The next barrier token. // Barriers are indicated by messages with a null target whose arg1 field carries the token. private int mNextBarrierToken; private native void nativeInit(); private native void nativeDestroy(); //看所传参数,应该是用于消息阻塞等待的时间 private native void nativePollOnce( int ptr, int timeoutMillis); //与上面成对,对上面的阻塞进行唤醒 private native void nativeWake( int ptr); /** * Callback interface for discovering when a thread is going to block * waiting for more messages. */ public static interface IdleHandler { /** * Called when the message queue has run out of messages and will now * wait for more. Return true to keep your idle handler active, false * to have it removed. This may be called if there are still messages * pending in the queue, but they are all scheduled to be dispatched * after the current time. */ boolean queueIdle(); } //..... MessageQueue(boolean quitAllowed) { mQuitAllowed = quitAllowed; nativeInit(); } @Override protected void finalize() throws Throwable { try { nativeDestroy(); } finally { super.finalize(); } } //***************************Looper.loop()调用此方法*********************** final Message next() { int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } //由下面代码可看出,主要有两点会进入阻塞状态,一是当消息队列中没有消息时,它会使线程进入等待状态 //二是消息队列中有消息,但是消息指定了执行的时间,而现在还没有到这个时间,线程也会进入等待状态 nativePollOnce( mPtr, nextPollTimeoutMillis); synchronized ( this) { if ( mQuiting) { return null; } // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg. target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. //从消息队列中检索出消息, do { prevMsg = msg; msg = msg. next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg. when) { // Next message is not ready. Set a timeout to wake up when it is ready. // 计算时间,计算阻塞等待的时间,一般可能会疑问上面的nativePollOnce在怎么时候执行,阻塞在 // 怎么时候被使用,主要是在执行下面逻辑操作时,可能有其他消息进入这个方法,时间在这时候起作用 nextPollTimeoutMillis = ( int) Math.min(msg.when - now, Integer. MAX_VALUE); } else { // Got a message. //在此对阻塞的开关设值,代表有值在处理,在enqueueMessage中对这个开关进行处理 mBlocked = false; if (prevMsg != null) { prevMsg. next = msg. next; } else { mMessages = msg. next; } msg. next = null; if ( false) Log.v( "MessageQueue", "Returning message: " + msg); //标记为已使用 msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && ( mMessages == null || now < mMessages.when )) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. // 标识为空闲,可以处理其他消息 mBlocked = true; continue; } if ( mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers ); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for ( int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler //处理idleHandler当返回true时,执行完删除,返回fasle不删除 boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log. wtf("MessageQueue", "IdleHandler threw exception", t); } if (!keep) { synchronized ( this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. // 标0代表不用再阻塞等待,可以继续执行 nextPollTimeoutMillis = 0; } } final void quit() { if (!mQuitAllowed) { throw new RuntimeException( "Main thread not allowed to quit."); } synchronized ( this) { if ( mQuiting) { return; } mQuiting = true; } nativeWake( mPtr); } //目前没有看到应用常景,代表逻辑主要是生成一个具体时间的消息,并对arg1赋token值 final int enqueueSyncBarrier( long when) { // Enqueue a new sync barrier token. // We don't need to wake the queue because the purpose of a barrier is to stall it. synchronized ( this) { final int token = mNextBarrierToken++; final Message msg = Message. obtain(); msg. arg1 = token; Message prev = null; Message p = mMessages; if (when != 0) { while (p != null && p. when <= when) { prev = p; p = p. next; } } if (prev != null) { // invariant: p == prev.next msg. next = p; prev. next = msg; } else { msg. next = p; mMessages = msg; } return token; } } final void removeSyncBarrier( int token) { // Remove a sync barrier token from the queue. // If the queue is no longer stalled by a barrier then wake it. final boolean needWake; synchronized ( this) { Message prev = null; Message p = mMessages; while (p != null && (p. target != null || p.arg1 != token)) { prev = p; p = p. next; } if (p == null) { throw new IllegalStateException( "The specified message queue synchronization " + " barrier token has not been posted or has already been removed."); } if (prev != null) { prev. next = p. next; needWake = false; } else { mMessages = p. next; needWake = mMessages == null || mMessages.target != null; } p.recycle(); } if (needWake) { nativeWake( mPtr); } } //**************************Handler.sendMessage调用此方法*********************** final boolean enqueueMessage(Message msg, long when) { if (msg.isInUse()) { throw new AndroidRuntimeException(msg + " This message is already in use."); } if (msg.target == null) { throw new AndroidRuntimeException( "Message must have a target."); } boolean needWake; synchronized ( this) { if ( mQuiting) { RuntimeException e = new RuntimeException( msg. target + " sending message to a Handler on a dead thread"); Log. w("MessageQueue", e.getMessage(), e); return false; } msg. when = when; Message p = mMessages; //Message的整个队列是以when的时间升序排列的,但时间比顶级消息还要小时,直接把消息加入第一个 if (p == null || when == 0 || when < p. when) { // New head, wake up the event queue if blocked. msg. next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. // 判断当前msg所处在链状中的位置,对这异步消息一直不怎么理解 needWake = mBlocked && p. target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p. next; if (p == null || when < p. when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg. next = p; // invariant: p == prev.next prev. next = msg; } } if (needWake) { //唤醒,无需再等待 nativeWake( mPtr); } return true; } }
相关推荐
在Android开发领域,深入理解和应用源码分析以及开源库的运用是提升技能的关键步骤。"Android+上百实例源码分析以及开源分析+集合打包3"这个资源提供了丰富的学习材料,涵盖了多个方面,旨在帮助开发者更好地理解和...
源码分析是理解Android系统和应用运行机制的基石。通过阅读源码,开发者可以学习到如何有效地管理活动(Activities)、服务(Services)、广播接收器(Broadcast Receivers)和内容提供者(Content Providers),...
下面我们将深入探讨Android事件处理机制的原理及其源码分析。 首先,Android事件处理主要通过事件分发链来完成。当用户在屏幕上进行操作时,如点击按钮或滑动屏幕,这些动作会被转换为触摸事件并由系统进行处理。...
这不, 前几天为了了解android的消息处理机制, 我看 了Looper, Handler, Message这几个类的源码, 结果又一次被googler的设计震撼了, 特与大家分享。 android的消息处理有三个核心类: Looper,Handler和Message...
"Android 源码分析-打电话和发短信" Android 源码分析-打电话和发短信是 Android 开发者中的一项重要内容。本文将对 Android 源码中的打电话和发短信机制进行深入分析,并对相关知识点进行总结。 一、ITelephony ...
Android 事件分发机制的源码分析将涉及到事件的发布、订阅、处理等。 本文对 Android 开源框架源码进行了分析,涉及了 EventBus、Glide、OkHttp、Android 事件分发等多个 Android 框架的源码解析。通过对这些框架的...
Android Camera系统架构源码分析是Android系统中Camera模块的核心组件之一,负责摄像头的图像捕获、处理和存储。下面我们将对Android Camera系统架构源码进行分析,了解其内部机制和关键组件。 一、ImgBufQueue类 ...
Android的触摸事件处理机制,如ACTION_DOWN、ACTION_UP、ACTION_MOVE等,会在这部分体现。 图片处理是拼图游戏的核心。开发者可能使用Bitmap对象加载和存储拼图碎片,使用Canvas进行绘图操作,如裁剪、旋转和组合...
"Android上百实例源码分析以及开源分析"集合提供了一系列实例,旨在帮助开发者更好地掌握Android应用开发的核心技术和最佳实践。这个资源包涵盖了多种Android应用开发中的常见问题和解决方案,通过实例源码,开发者...
本资源"Android+上百实例源码分析以及开源分析+集合打包9"提供了一系列的实战案例和源代码,帮助开发者深入理解Android开发的核心概念,并提升实际操作技能。下面我们将逐一解析这些实例及其涉及的关键知识点。 1. ...
Android的消息机制是Android系统中处理异步通信和线程间通信的核心组件,它涉及到Handler、Looper和Message等关键概念。这个压缩包包含了源码示例(MessageExample)和三篇PDF文档,帮助深入理解这一机制。 首先,...
"Cordova-Android 源码分析系列二" 本文将对 Cordova-Android 源码的 CordovaWebView 和 CordovaWebViewClient 类进行分析,了解 Web 网页加载的过程、错误处理和多线程处理等机制。 CordovaWebView 类分析 ...
源码分析可以帮助开发者了解Android系统级别的工作原理,优化性能,或者开发自定义的浏览器应用。 1. **WebKit引擎**:Android 4.0 Browser基于WebKit开源项目,这是一个高性能的Web渲染引擎,负责将HTML、CSS、...
5. **UI系统**:Android的用户界面框架包括视图系统、动画、触摸事件处理等,通过源码分析,开发者能更好地理解和调试复杂的UI问题。 6. **服务框架**:Android服务框架是系统服务和应用服务的载体,如Activity ...
【Android 源码分析与学习笔记】 在深入探索 Android 开发的过程中,源码阅读是提升技术水平的关键步骤。Android 源码包含了操作系统层面、框架层以及应用开发接口等各个层次的实现细节,有助于开发者理解系统行为...
本资源"android实现消息推送源码.rar"提供了一个实现这一功能的源代码示例,这对于开发者来说是学习和理解消息推送机制的宝贵资料。 消息推送在Android中的实现通常涉及以下几个关键知识点: 1. **GCM(Google ...
ExoPlayer是由Google开发的一个强大且灵活的媒体播放器,它提供了比`MediaPlayer`更高级别的API,支持自定义解码器、更好地控制缓冲和加载,以及更强大的错误处理机制。 在UI设计方面,源码可能包含了布局文件,...
通过深入研究这些源码,开发者不仅可以创建自定义的全键盘输入法,还可以理解Android系统的输入机制,这对于开发更复杂、更个性化的输入解决方案至关重要。在实践中,你可能还会遇到性能优化、适配不同屏幕尺寸和...
【Android愤怒的小鸟源码】是一个专为学习者设计的游戏开发资源,旨在帮助开发者深入了解游戏制作过程,特别是...通过深入分析和实践这个源码,开发者可以提升自己的Android游戏开发能力,并为今后的项目打下坚实基础。
通过分析这个"android调频收音机源码",开发者可以学习到Android音频处理、硬件交互、用户界面设计以及系统级服务的运用等多方面的知识,并能将其应用于实际项目中,提升自己的Android开发能力。