`
wudixiaotie
  • 浏览: 142675 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

erlang 列表推导和递归哪个速度快?

 
阅读更多

直接上代码:

-module (tl).

-export ([t1/0, t2/0]).

t1() ->
    [ X || X <- lists:seq(1, 5000) ].

t2() ->
    t2(lists:seq(1, 5000)).
t2([H|T]) ->
    H,
    t2(T);
t2([]) ->
    ok.

 tc代码:

%% ===================================================================
%% Author xiaotie
%% 2015-07-30
%% 单进程循环测试:LoopTimes是循环次数
%% tc:t(Module, Function, ArgsList, LoopTimes).
%% 多进程并发测试:SpawnProcessesCount是并发的进程数
%% tc:ct(Module, Function, ArgsList, SpawnProcessesCount).
%% ===================================================================

-module (tc).

-export ([t/4, ct/4]).


tc(M, F, A) ->
    {Microsecond, _} = timer:tc (M, F, A),
    Microsecond.

distribution(List, Aver) ->
    distribution(List, Aver, 0, 0).
distribution([H|T], Aver, Greater, Less) ->
    case H > Aver of
        true ->
            distribution(T, Aver, Greater + 1, Less);
        false ->
            distribution(T, Aver, Greater, Less + 1)
    end;
distribution([], _Aver, Greater, Less) ->
    {Greater, Less}.

%% ===================================================================
%% test: one process test N times
%% ===================================================================

t(M, F, A, N) ->
    {Max, Min, Sum, Aver, Greater, Less} = loop ({M, F, A}, N),
    io:format ("=====================~n"),
    io:format ("execute [~p] times of {~p, ~p, ~p}:~n", [N, M, F, A]),
    io:format ("Maximum: ~p(μs)\t~p(s)~n", [Max, Max / 1000000]),
    io:format ("Minimum: ~p(μs)\t~p(s)~n", [Min, Min / 1000000]),
    io:format ("Sum: ~p(μs)\t~p(s)~n", [Sum, Sum / 1000000]),
    io:format ("Average: ~p(μs)\t~p(s)~n", [Aver, Aver / 1000000]),
    io:format ("Greater: ~p~nLess: ~p~n", [Greater, Less]),
    io:format ("=====================~n").


loop({M, F, A}, N) ->
    loop ({M, F, A}, N, 1, 0, 0, 0, []).

loop({M, F, A}, N, I, Max, Min, Sum, List) when N >= I ->
    Microsecond = tc (M, F, A),
    NewSum = Sum + Microsecond,
    if
        Max == 0 ->
            NewMax = NewMin = Microsecond;
        Max < Microsecond ->
            NewMax = Microsecond,
            NewMin = Min;
        Min > Microsecond ->
            NewMax = Max,
            NewMin = Microsecond;
        true ->
            NewMax = Max,
            NewMin = Min
    end,
    loop ({M, F, A}, N, I + 1, NewMax, NewMin, NewSum, [Microsecond|List]);
loop({_M, _F, _A}, N, _I, Max, Min, Sum, List) ->
    Aver = Sum / N,
    {Greater, Less} = distribution(List, Aver),
    {Max, Min, Sum, Aver, Greater, Less}.

%% ===================================================================
%% Concurrency test: N processes each test one time
%% ===================================================================

ct(M, F, A, N) ->
    {Max, Min, Sum, Aver, Greater, Less} = cloop ({M, F, A}, N),
    io:format ("=====================~n"),
    io:format ("spawn [~p] processes of {~p, ~p, ~p}:~n", [N, M, F, A]),
    io:format ("Maximum: ~p(μs)\t~p(s)~n", [Max, Max / 1000000]),
    io:format ("Minimum: ~p(μs)\t~p(s)~n", [Min, Min / 1000000]),
    io:format ("Sum: ~p(μs)\t~p(s)~n", [Sum, Sum / 1000000]),
    io:format ("Average: ~p(μs)\t~p(s)~n", [Aver, Aver / 1000000]),
    io:format ("Greater: ~p~nLess: ~p~n", [Greater, Less]),
    io:format ("=====================~n").


cloop({M, F, A}, N) ->
    CollectorPid = self(),
    ok = loop_spawn({M, F, A}, CollectorPid, N),
    collector(0, 0, 0, N, 1, []).


loop_spawn({M, F, A}, CollectorPid, N) when N > 0 ->
    spawn_link(fun() -> worker({M, F, A}, CollectorPid) end),
    loop_spawn({M, F, A}, CollectorPid, N - 1);
loop_spawn(_, _, 0) ->
    ok.

collector(Max, Min, Sum, N, I, List) when N >= I ->
    receive
        {result, Microsecond} ->
            NewSum = Sum + Microsecond,
            if
                Max == 0 ->
                    NewMax = NewMin = Microsecond;
                Max < Microsecond ->
                    NewMax = Microsecond,
                    NewMin = Min;
                Min > Microsecond ->
                    NewMax = Max,
                    NewMin = Microsecond;
                true ->
                    NewMax = Max,
                    NewMin = Min
            end,
            collector(NewMax, NewMin, NewSum, N, I + 1, [Microsecond|List])
    after
        10000 ->
            ok
    end;
collector(Max, Min, Sum, N, _, List) ->
    Aver = Sum / N,
    {Greater, Less} = distribution(List, Aver),
    {Max, Min, Sum, Aver, Greater, Less}.


worker({M, F, A}, CollectorPid) ->
    Microsecond = tc(M, F, A),
    CollectorPid ! {result, Microsecond}.

 结果:

==> etoml (compile)
==> simple_im (compile)
Erlang/OTP 18 [erts-7.0] [source] [64-bit] [smp:8:8] [async-threads:10] [kernel-poll:false]

Eshell V7.0  (abort with ^G)
1> tc:t(tl, t1, [], 5000).
=====================
execute [5000] times of {tl, t1, []}:
Maximum: 357(μs)        3.57e-4(s)
Minimum: 98(μs) 9.8e-5(s)
Sum: 537592(μs) 0.537592(s)
Average: 107.5184(μs)   1.075184e-4(s)
Greater: 957
Less: 4043
=====================
2> tc:t(tl, t2, [], 5000).
=====================
execute [5000] times of {tl, t2, []}:
Maximum: 321(μs)        3.21e-4(s)
Minimum: 81(μs) 8.1e-5(s)
Sum: 431156(μs) 0.431156(s)
Average: 86.2312(μs)    8.62312e-5(s)
Greater: 1680
Less: 3320
=====================

 

2
1
分享到:
评论

相关推荐

    Efficiency Guide (erlang)

    列表推导是Erlang中非常强大的特性之一,它们不仅提高了代码的可读性和简洁性,而且通常比手动迭代更有效率。列表推导会自动进行优化,比如提前终止循环以避免不必要的计算。 ##### 1.2.3 误区:尾递归函数比普通...

    Erlang Programming

    1. **快速高效地开发软件**:通过其简洁的语法和高效的编译器,Erlang 能够让开发者以较快的速度完成软件的开发工作。 2. **系统容错性**:Erlang 的设计使得系统能够容忍软件错误和硬件故障,这主要得益于其独特...

    基于ARM架构服务器部署docker-compose

    基于arm64版本的docker-compose文件

    附件3-4:台区智能融合终端全性能试验增值税发票开具确认单.docx

    台区终端电科院送检文档

    埃夫特机器人Ethernet IP 通讯配置步骤

    埃夫特机器人Ethernet IP 通讯配置步骤

    rv320e机器人重型关节行星摆线减速传动装置研发.rar

    rv320e机器人重型关节行星摆线减速传动装置研发

    气缸驱动爬杆机器人的设计().zip

    气缸驱动爬杆机器人的设计().zip

    软件工程中期答辩1234567

    56tgyhujikolp[

    基于OpenCV的数字身份验证系统:人脸检测、训练与识别的Python实现

    内容概要:本文档提供了基于OpenCV的数字身份验证系统的Python代码示例,涵盖人脸检测、训练和识别三个主要功能模块。首先,通过调用OpenCV的CascadeClassifier加载预训练模型,实现人脸检测并采集多张人脸图像用于后续训练。接着,利用LBPH(局部二值模式直方图)算法对面部特征进行训练,生成训练数据集。最后,在实际应用中,系统能够实时捕获视频流,对比已有的人脸数据库完成身份验证。此外,还介绍了必要的环境配置如依赖库安装、文件路径设置以及摄像头兼容性的处理。 适合人群:对计算机视觉感兴趣的研发人员,尤其是希望深入了解OpenCV库及其在人脸识别领域的应用者。 使用场景及目标:适用于构建安全认证系统的企业或机构,旨在提高出入管理的安全性和效率。具体应用场景包括但不限于门禁控制系统、考勤打卡机等。 其他说明:文中提供的代码片段仅为基本框架,可根据实际需求调整参数优化性能。同时提醒开发者注意隐私保护法规,合法合规地收集和使用个人生物识别信息。

    Java并发编程面试题详解:123道经典题目解析与实战技巧

    内容概要:本文档详细介绍了Java并发编程的核心知识点,涵盖基础知识、并发理论、线程池、并发容器、并发队列及并发工具类等方面。主要内容包括但不限于:多线程应用场景及其优劣、线程与进程的区别、线程同步方法、线程池的工作原理及配置、常见并发容器的特点及使用场景、并发队列的分类及常用队列介绍、以及常用的并发工具类。文档旨在帮助开发者深入理解和掌握Java并发编程的关键技术和最佳实践。 适合人群:具备一定Java编程经验的研发人员,尤其是希望深入了解并发编程机制、提高多线程应用性能的中级及以上水平的Java开发者。 使用场景及目标:①帮助开发者理解并发编程的基本概念和技术细节;②指导开发者在实际项目中合理运用多线程和并发工具,提升应用程序的性能和可靠性;③为准备Java技术面试的候选人提供全面的知识参考。 其他说明:文档内容详尽,适合用作深度学习资料或面试复习指南。建议读者结合实际编码练习,逐步掌握并发编程技巧。文中提到的多种并发工具类和容器,均附有具体的应用场景和注意事项,有助于读者更好地应用于实际工作中。

    个人健康与健身追踪数据集,包含了日常步数统计、睡眠时长、活跃分钟数以及消耗的卡路里,适用于数据分析、机器学习

    这个数据集包含了日常步数统计、睡眠时长、活跃分钟数以及消耗的卡路里,是个人健康与健身追踪的一部分。 该数据集非常适合用于以下实践: 数据清洗:现实世界中的数据往往包含缺失值、异常值或不一致之处。例如,某些天的步数可能缺失,或者存在不切实际的数值(如10,000小时的睡眠或负数的卡路里消耗)。通过处理这些问题,可以学习如何清理和准备数据进行分析。 探索性分析(发现日常习惯中的模式):可以通过分析找出日常生活中的模式和趋势,比如一周中哪一天人们通常走得最多,或是睡眠时间与活跃程度之间的关系等。 构建可视化图表(步数趋势、睡眠与活动对比图):将数据转换成易于理解的图形形式,有助于更直观地看出数据的趋势和关联。例如,绘制步数随时间变化的趋势图,或是比较睡眠时间和活动量之间的关系图。 数据叙事(将个人风格的追踪转化为可操作的见解):通过讲述故事的方式,把从数据中得到的洞察变成具体的行动建议。例如,根据某人特定时间段内的活动水平和睡眠质量,提供改善健康状况的具体建议。

    《基于YOLOv8的港口船舶靠泊角度偏差预警系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    nginx 访问访问日志按天切割 shell脚本

    nginx

    《基于YOLOv8的核废料运输容器密封性检测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    《基于YOLOv8的农业无人机播种深度监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    uniapp知识付费(流量主)demo

    模拟知识付费小程序,可流量主运营模式

    java高并发之分片上传

    什么是普通上传 调用接口一次性完成一个文件的上传。 普通上传2个缺点 文件无法续传,比如上传了一个比较大的文件,中间突然断掉了,需要重来 大文件上传太慢 解决方案 分片上传

    英二2010-2021阅读理解 Part A 题干单词(补).pdf

    英二2010-2021阅读理解 Part A 题干单词(补).pdf

    2023-04-06-项目笔记 - 第四百五十五阶段 - 4.4.2.453全局变量的作用域-453 -2025.04-01

    2023-04-06-项目笔记-第四百五十五阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.453局变量的作用域_453- 2025-04-01

    友缘公司钢材管理平台微信小程序的设计与实现.zip

    微信小程序项目课程设计,包含LW+ppt

Global site tag (gtag.js) - Google Analytics