`

用信号量机制来实现多个进程对临界资源的互斥访问 & PV操作

阅读更多
进程互斥  定义:两个或两个以上的进程,不能同时进入关于同一组共享变量的临界区域,否则可能发生与时间有关的错误,这种现象被称作进程互斥.
  在多道程序环境下,存在着临界资源,它是指多进程存在时必须互斥访问的资源。也就是某一时刻不允许多个进程同时访问,只能单个进程的访问。我们把这些程序的片段称作临界区或临界段,它存在的目的是有效的防止竞争条件又能保证最大化使用共享数据。而这些并发进程必须有好的解决方案,才能防止出现以下情况:多个进程同时处于临界区,临界区外的进程阻塞其他的进程,有些进程在临界区外无休止的等待。除此以外,这些方案还不能对CPU的速度和数目做出任何的假设。只有满足了这些条件,才是一个好的解决方案。
  访问临界资源的循环进程可以这样来描述:
  Repeat
  entry section
  Critical sections;
  exit section
  Remainder sectioni;
  Until false
  为实现进程互斥,可以利用软件的方法,也可以在系统中设置专门的同步机制来协调多个进程,但是所有的同步机制应该遵循四大准则:
  1.空闲让进 当临界资源处于空闲状态,允许一个请求进入临界区的进程立即进入临界区,从 而有效的利用资源。
  2.忙则等待 已经有进程进入临界区时,意味着相应的临界资源正在被访问,所以其他准备进 入临界区的进程必须等待,来保证多进程互斥。
  3.有限等待 对要求访问临界资源的进程,应该保证该进程能在有效的时间内进入临界区,防 止死等状态。
  4.让权等待 当进程不能进入临界区,应该立即释放处理机,防止进程忙等待。
  早期解决进程互斥问题有软件的方法和硬件的方法,如:严格轮换法,Peterson的解决方案,TSL指令,Swap指令都可以实现进程的互斥,不过它们都有一定的缺陷,这里就不一一详细说明,而后来Kijkstra提出的信号量机制则更好的解决了互斥问题。


信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施, 它负责协调各个线程, 以保证它们能够正确、合理的使用公共资源。
  Semaphore分为单值和多值两种,前者只能被一个线程获得,后者可以被若干个线程获得。
  以一个停车场的运作为例。简单起见,假设停车场只有三个车位,一开始三个车位都是空的。这时如 果同时来了五辆车,看门人允许其中三辆直接进入,然后放下车拦,剩下的车则必须在入口等待,此后来的车也都不得不在入口处等待。这时,有一辆车离开停车 场,看门人得知后,打开车拦,放入外面的一辆进去,如果又离开两辆,则又可以放入两辆,如此往复。
  在这个停车场系统中,车位是公共资源,每辆车好比一个线程,看门人起的就是信号量的作用。
  抽象的来讲,信号量的特性如下:信号量是一个非负整数(车位数),所有通过它的线程/进程(车 辆)都会将该整数减一(通过它当然是为了使用资源),当该整数值为零时,所有试图通过它的线程都将处于等待状态。在信号量上我们定义两种操作: Wait(等待) 和 Release(释放)。当一个线程调用Wait操作时,它要么得到资源然后将信号量减一,要么一直等下去(指放入阻塞队列),直到信号量大于等于一时。 Release(释放)实际上是在信号量上执行加操作,对应于车辆离开停车场,该操作之所以叫做“释放”是因为释放了由信号量守护的资源。
  信号量,是可以用来保证两个或多个关键代码段不被并发调用。在进入一个关键代码段之前,线程必 须获取一个信号量;一旦该关键代码段完成了,那么该线程必须释放信号量。其它想进入该关键代码段的线程必须等待直到第一个线程释放信号量。为了完成这个过 程,需要创建一个信号量VI,然后将Acquire Semaphore VI以及Release Semaphore VI分别放置在每个关键代码段的首末端。确认这些信号量VI引用的是初始创建的信号量。
  
信号量的分类:

  
  整型信号量(integer semaphore):信号量是整数
  记录型信号量(record semaphore):每个信号量s除一个整数值s.value(计数)外,还有一个进程等待队列s.L,其中是阻塞在该信号量的各个进程的标识
  二进制信号量(binary semaphore):只允许信号量取0或1值
  每个信号量至少须记录两个信息:信号量的值和等待该信号量的进程队列。它的类型定义如下:(用类PASCAL语言表述)
  semaphore = record
  value: integer;
  queue: ^PCB;
  end;
  其中PCB是进程控制块,是操作系统为每个进程建立的数据结构。
  s.value>=0时,s.queue为空;
  s.value<0时,s.value的绝对值为s.queue中等待进程的个数;
  信号量的创建

  同共享内存一样,系统中同样需要为信号量集定制一系列专有的操作函数(semget,semctl等)。系统命令ipcs可查看当前的系统IPC的状态,在命令后使用-s参数。使用函数semget可以创建或者获得一个信号量集ID,函数原型如下:
  #include <sys/shm.h>
  int semget( key_t key, int nsems, int flag);
  函数中参数key用来变换成一个标识符,每一个IPC对象与一个key相对应。当新建一个共享内存段时,使用参数flag的相应权限位对ipc_perm结构中的mode域赋值,对相应信号量集的shmid_ds初始化的值如表1所示。
  表1shmid_ds结构初始化值表
  
ipc_perm结构数据
   初 值
   ipc_perm结构数据
   初 值
  
Sem_otime
   0
   Sem_nsems
   Nsems
  
Sem_ctime
   系统当前值
   参数nsems是一个大于等于0的值,用于指明该信号量集中可用资源数(在创建一个信号量 时)。当打开一个已存在的信号量集时该参数值为0。函数执行成功,则返回信号量集的标识符(一个大于等于0的整数),失败,则返回–1。函数semop用 以操作一个信号量集,函数原型如下: #include <sys/sem.h>
  int semop( int semid, struct sembuf semoparray[], size_t nops );
  函数中参数semid是一个通过semget函数返回的一个信号量标识符,参数nops标明了 参数semoparray所指向数组中的元素个数。参数semoparray是一个struct sembuf结构类型的数组指针,结构sembuf来说明所要执行的操作




关 于 PV 操 作
http://blog.csdn.net/leves1989/archive/2008/11/15/3305609.aspx


在计算机操作系统中,PV操作是进程管理中的难点。
首先应弄清PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:
    P(S):①将信号量S的值减1,即S=S-1;
           ②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
    V(S):①将信号量S的值加1,即S=S+1;
           ②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。PV操作属于进程的低级通信。
什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。信号量的值与相应资源的使用情况有关。当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。注意,信号量的值仅能由PV操作来改变。
     一般来说,信号量S³0时,S表示可用资源的数量。执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。而执行一个V操作意味着释放一个单位资源,因此S的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
    利用信号量和PV操作实现进程互斥的一般模型是:
进程P1              进程P2           ……          进程Pn
……                  ……                           ……
P(S);              P(S);                         P(S);
临界区;             临界区;                        临界区;
V(S);              V(S);                        V(S);
……                  ……            ……           ……
    其中信号量S用于互斥,初值为1。
    使用PV操作实现进程互斥时应该注意的是:
    (1)每个程序中用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。若有多个分支,要认真检查其成对性。
    (2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。
   (3)互斥信号量的初值一般为1。
    利用信号量和PV操作实现进程同步
PV操作是典型的同步机制之一。用一个信号量与一个消息联系起来,当信号量的值为0时,表示期望的消息尚未产生;当信号量的值非0时,表示期望的消息已经存在。用PV操作实现进程同步时,调用P操作测试消息是否到达,调用V操作发送消息。
    使用PV操作实现进程同步时应该注意的是:
    (1)分析进程间的制约关系,确定信号量种类。在保持进程间有正确的同步关系情况下,哪个进程先执行,哪些进程后执行,彼此间通过什么资源(信号量)进行协调,从而明确要设置哪些信号量。
    (2)信号量的初值与相应资源的数量有关,也与P、V操作在程序代码中出现的位置有关。
    (3)同一信号量的P、V操作要成对出现,但它们分别在不同的进程代码中。
【例1】生产者-消费者问题
在多道程序环境下,进程同步是一个十分重要又令人感兴趣的问题,而生产者-消费者问题是其中一个有代表性的进程同步问题。下面我们给出了各种情况下的生产者-消费者问题,深入地分析和透彻地理解这个例子,对于全面解决操作系统内的同步、互斥问题将有很大帮助。
(1)一个生产者,一个消费者,公用一个缓冲区。
定义两个同步信号量:
empty——表示缓冲区是否为空,初值为1。
   full——表示缓冲区中是否为满,初值为0。
生产者进程
while(TRUE){
生产一个产品;
     P(empty);
     产品送往Buffer;
     V(full);
}
消费者进程
while(True){
P(full);
   从Buffer取出一个产品;
   V(empty);
   消费该产品;
   }
(2)一个生产者,一个消费者,公用n个环形缓冲区。
定义两个同步信号量:
empty——表示缓冲区是否为空,初值为n。
full——表示缓冲区中是否为满,初值为0。
    设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指
,指向下一个可用的缓冲区。
生产者进程
while(TRUE){
     生产一个产品;
     P(empty);
     产品送往buffer(in);
     in=(in+1)mod n;
     V(full);
}

消费者进程
while(TRUE){
P(full);
   从buffer(out)中取出产品;
   out=(out+1)mod n;
   V(empty);
   消费该产品;
   }
(3)一组生产者,一组消费者,公用n个环形缓冲区
    在这个问题中,不仅生产者与消费者之间要同步,而且各个生产者之间、各个消费者之间还必须互斥地访问缓冲区。
定义四个信号量:
empty——表示缓冲区是否为空,初值为n。
full——表示缓冲区中是否为满,初值为0。
mutex1——生产者之间的互斥信号量,初值为1。
mutex2——消费者之间的互斥信号量,初值为1。

    设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。
生产者进程
while(TRUE){
     生产一个产品;
     P(empty);
     P(mutex1);
     产品送往buffer(in);
     in=(in+1)mod n;
     V(mutex1);
     V(full);
}
消费者进程
while(TRUE){
P(full)
   P(mutex2);
   从buffer(out)中取出产品;
   out=(out+1)mod n;
   V(mutex2);
   V(empty);
   消费该产品;
   }
  需要注意的是无论在生产者进程中还是在消费者进程中,两个P操作的次序不能颠倒。应先执行同步信号量的P操作,然后再执行互斥信号量的P操作,否则可能造成进程死锁。
【例2】桌上有一空盘,允许存放一只水果。爸爸可向盘中放苹果,也可向盘中放桔子,儿子专等吃盘中的桔子,女儿专等吃盘中的苹果。规定当盘空时一次只能放一只水果供吃者取用,请用P、V原语实现爸爸、儿子、女儿三个并发进程的同步。

分析 在本题中,爸爸、儿子、女儿共用一个盘子,盘中一次只能放一个水果。当盘子为空时,爸爸可将一个水果放入果盘中。若放入果盘中的是桔子,则允许儿子吃,女儿必须等待;若放入果盘中的是苹果,则允许女儿吃,儿子必须等待。本题实际上是生产者-消费者问题的一种变形。这里,生产者放入缓冲区的产品有两类,消费者也有两类,每类消费者只消费其中固定的一类产品。

    解:在本题中,应设置三个信号量S、So、Sa,信号量S表示盘子是否为空,其初值为l;信号量So表示盘中是否有桔子,其初值为0;信号量Sa表示盘中是否有苹果,其初值为0。同步描述如下:
int S=1;
int Sa=0;
int So=0;
      main()
      {
        cobegin
            father();      /*父亲进程*/
            son();        /*儿子进程*/
            daughter();    /*女儿进程*/
        coend
    }
    father()
    {
        while(1)
          {
            P(S);
            将水果放入盘中;
            if(放入的是桔子)V(So);
            else  V(Sa);
           }
     }
    son()
    {
        while(1)
          {
             P(So);
             从盘中取出桔子;
             V(S);
             吃桔子;
            }
    }
    daughter()
    {
         while(1)
            {
              P(Sa);
              从盘中取出苹果;
              V(S);
              吃苹果;
            }


思考题:

四个进程A、B、C、D都要读一个共享文件F,系统允许多个进程同时读文件F。但限制是进程A和进程C不能同时读文件F,进程B和进程D也不能同时读文件F。为了使这四个进程并发执行时能按系统要求使用文件,现用PV操作进行管理,请回答下面的问题:
    (1)应定义的信号量及初值:                    。
    (2)在下列的程序中填上适当的P、V操作,以保证它们能正确并发工作:
     A()                B()                  C()                 D()
      {                 {                    {                  {
      [1];                [3];                  [5];                 [7];
      read F;             read F;                read F;              read F;
     [2];                [4];                  [6];                 [8];
      }                  }                    }                  }
    思考题解答:
(1)定义二个信号量S1、S2,初值均为1,即:S1=1,S2=1。其中进程A和C使用信号量S1,进程B和D使用信号量S2。
(2)从[1]到[8]分别为:P(S1) V(S1) P(S2) V(S2) P(S1) V(S1) P(S2) V(S2)
分享到:
评论

相关推荐

    基于A*算法的往返式全覆盖路径规划改进及其Matlab实现

    内容概要:本文详细介绍了如何利用A*算法改进传统的往返式路径规划,解决扫地机器人在复杂环境中容易卡住的问题。首先构建了一个可视化的栅格地图用于模拟环境,然后引入了优先级运动规则,使机器人能够有规律地进行往返清扫。当遇到死角时,通过A*算法计算最佳逃生路径,确保机器人能够顺利脱困并继续完成清扫任务。实验结果显示,改进后的算法显著提高了清洁覆盖率,降低了路径重复率。此外,还讨论了一些潜在的优化方向,如动态调整启发函数权重、断点续传以及能耗模型等。 适合人群:对路径规划算法感兴趣的科研人员、自动化专业学生、扫地机器人开发者。 使用场景及目标:适用于需要高覆盖率和低重复率的室内清洁任务,旨在提高扫地机器人的工作效率和智能化水平。 其他说明:文中提供了详细的Matlab代码实现,并附带了仿真测试结果,有助于读者理解和复现该算法。

    爬取喜马拉雅听书(1).py

    爬取喜马拉雅听书(1)

    安卓向上传递数据学习笔记总结

    安卓向上传递数据学习笔记总结

    tigervnc-selinux-1.11.0-9.el8.x64-86.rpm.tar.gz

    1、文件说明: Centos8操作系统tigervnc-selinux-1.11.0-9.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf tigervnc-selinux-1.11.0-9.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm

    户外储能电源双向逆变器板生产资料及技术规格详解

    内容概要:本文详细介绍了户外储能电源双向逆变器板的技术资料及其特点。涵盖原理文件、PCB文件、源代码、电感与变压器规格参数等,适用于2KW(最大3KW)的户外储能电源。文中强调了双向软开关DC-DC设计、两颗M0+ 32位MCU的分工、SPWM调制方式、H桥IGBT的应用、详细的电气参数和技术特性。此外,还包括了SPWM信号生成代码示例、硬件设计细节、生产注意事项等。 适合人群:从事户外储能电源开发的技术人员、电子工程师、产品经理等。 使用场景及目标:帮助开发者快速掌握双向逆变器板的设计和生产要点,缩短产品研发周期,提高产品质量和可靠性。具体应用场景包括但不限于户外应急电源、便携式储能设备等。 其他说明:本文提供了丰富的技术细节和实践经验,如双向软开关DC-DC设计、SPWM调制、IGBT驱动、EMC整改记录等,有助于解决实际开发中的难题。同时,附带的实际案例展示了该方案的成功应用,进一步证明了其可行性和优越性。

    电能质量分析:间谐波分析.zip

    电子仿真教程,从基础到精通,每个压缩包15篇教程,每篇教程5000字以上。

    【计算机科学领域】美国计算机学会(ACM):组织架构、使命愿景、核心价值及活动项目介绍

    内容概要:美国计算机学会(ACM)是一个成立于1947年的国际性计算机专业组织,致力于推动计算机科学的发展,提供教育、资源和专业发展机会。ACM的使命是促进计算机科学和信息技术领域的进步,愿景是成为全球计算机专业人士的首选组织。其核心价值包括卓越、诚信、包容性、合作和创新。ACM定期举办学术会议,如SIGGRAPH和图灵奖颁奖典礼,出版高质量的学术期刊和会议论文集,涵盖人工智能、软件工程、网络安全等领域。此外,ACM还提供在线课程、研讨会、认证项目等教育资源,以及职业规划、网络机会和领导力培训等职业发展服务。ACM图灵奖被誉为“计算机界的诺贝尔奖”,每年颁发给对计算机科学和技术做出重大贡献的个人。; 适合人群:计算机科学领域的专业人士、教育工作者、工程师和学生。; 使用场景及目标:①了解计算机科学领域的最新研究成果和发展趋势;②获取高质量的教育资源和职业发展机会;③参与计算机科学领域的学术交流和合作。; 其他说明:ACM作为一个全球性的组织,在教育、研究和行业实践中发挥着重要作用,推动了技术创新和社会进步。

    最新版logstash-8.17.4-windows-x86-64.zip

    logstash-8.17.4-windows-x86_64.zip

    一个基于Springboot使用Aspect实现一个切面,以记录日志为例

    springboot 一个基于Springboot使用Aspect实现一个切面,以记录日志为例

    音箱底部折边设备sw22可编辑_三维3D设计图纸_包括零件图_机械3D图可修改打包下载_三维3D设计图纸_包括零件图_机械3D图可修改打包下载.zip

    音箱底部折边设备sw22可编辑_三维3D设计图纸_包括零件图_机械3D图可修改打包下载_三维3D设计图纸_包括零件图_机械3D图可修改打包下载.zip

    基于Python Django MySQL的个性化图书推荐系统:协同过滤算法及远程部署实现

    内容概要:本文详细介绍了如何使用Python、Django和MySQL构建一个完整的个性化图书推荐系统。系统从前端界面设计、后端逻辑实现到数据库设计,涵盖了用户管理、图书管理、评分系统等功能模块。重点讲解了基于用户和项目的协同过滤算法实现,以及在用户评分数据不足时的标签推荐备份方案。此外,还包括了系统部署、测试和优化的具体步骤,如云服务器部署、性能测试、数据库优化等。 适合人群:具备一定Python和Web开发基础的研发人员,尤其是对推荐系统感兴趣的技术爱好者。 使用场景及目标:适用于希望深入了解图书推荐系统的工作原理和实现细节的技术人员。目标是帮助读者掌握从零开始搭建一个完整的个性化推荐系统的方法,包括前后端开发、算法实现和系统部署。 其他说明:文中提供了大量代码示例和实战经验,如数据库设计、爬虫实现、权限管理等,有助于读者更好地理解和应用相关技术。

    Ai和python学习资料

    Ai和python学习资料

    文本摘要.py

    文本摘要

    冲击试验机sw22_三维3D设计图纸_包括零件图_机械3D图可修改打包下载_三维3D设计图纸_包括零件图_机械3D图可修改打包下载.zip

    冲击试验机sw22_三维3D设计图纸_包括零件图_机械3D图可修改打包下载_三维3D设计图纸_包括零件图_机械3D图可修改打包下载.zip

    Java开发MybatisPlus框架详解:增强Mybatis功能实现高效CRUD操作与代码生成

    内容概要:本文详细介绍了MyBatis Plus(MP),它是MyBatis的增强工具,旨在简化CRUD操作、提高开发效率。其主要功能包括内置分页插件、简化CRUD操作以及代码生成器。使用时只需引入相应依赖,自定义Mapper接口继承BaseMapper泛型接口,并通过实体类反射获取数据库表信息。文章还介绍了常用注解如@TableName、@TableId、@TableField、@TableLogic和@Version,配置项如全局配置、类型别名和Mapper文件路径,以及核心功能如批量插入、分页查询、条件构造器(Wrapper)等。此外,扩展功能涵盖逻辑删除、枚举处理器和JSON处理器,插件功能则包括分页插件的配置和使用。 适合人群:具备一定Java开发经验,尤其是熟悉MyBatis框架的开发者,特别是那些希望提高开发效率、减少重复代码的工作1-3年研发人员。 使用场景及目标:①简化数据库操作,提高开发效率;②快速生成代码,减少手动编写SQL语句的工作量;③实现分页查询、逻辑删除、枚举和JSON字段处理等高级功能,提升应用的灵活性和可维护性。 其他说明:本文不仅提供了MyBatis Plus的功能介绍和使用方法,还深入探讨了条件构造器(Wrapper)的使用技巧,帮助开发者更好地理解和掌握这一强大的工具。在实际开发中,合理利用这些功能可以显著提高开发效率和代码质量。建议在学习过程中结合具体项目实践,逐步掌握各个功能的应用场景和最佳实践。

    电路仿真:射频电路仿真.zip

    电子仿真教程,从基础到精通,每个压缩包15篇教程,每篇教程5000字以上。

    【java毕业设计】Springboot+Vue高考志愿填报系统 源码+sql脚本+论文 完整版

    这个是完整源码 SpringBoot + vue 实现 【java毕业设计】Springboot+Vue高考志愿填报系统 源码+sql脚本+论文 完整版 数据库是mysql 随着高考制度的不断完善和高等教育资源的日益丰富,高考志愿填报成为考生和家长关注的焦点。本文旨在开发一个基于Spring Boot后端框架、Vue.js前端框架和实现以下功能:考生信息管理、院校信息查询、专业信息查询、志愿填报、志愿评测等。通过Spring Boot框架构建后端服务,提供 API接口与前端进行交互;Vue.js框架用于构建前端用户界面,实现数据的动态展示和交互操作;MySQL数据库用于存储考生信息、院校信息、专业信息等数据。 在系统设计过程中,我们充分考MySQL数据库的高考志愿填报系统,提高志愿填报的效率和准确性,为考生和家长提供便捷的服务。 系统主要实现以下功能:考分考MySQL数据库的高考志愿填报系统,提高志愿填报的效率和准确性,为考生和家长提供便捷的服务生信息管理、院校信息查询、专业信息查询、志愿填报、志愿评测等。通过Spring Boot框架构建后端服务,提供 API接口与前端进行交互;Vue.js框架用于构建前端用户界面,实现数据的动态展示和交互操作;MySQL数据库用于存储考生信息、院校信息、专业信息等数据。 在系统设计过程中,我们充分考虑了系统的易用性、可扩展性和安全性。通过合理的数据库设计和优化,提高了系统的查询效率。同时,采用Spring Security等安全框架对系统进行安全防护,确保数据的安全性。 本文详细阐述了系统的需求分析、设计、实现和测试过程,并对关键技术和实现难点进行了深入探讨。通过实验验证,本系统能够满足高考志愿填报的基本需求,为考生和家长提供了高效、便捷的服务。此外,本文还对系统未来的发展方向和改进空间进行了展望,以期进一步完善系统功能,提高用户体验。

    基于MATLAB的特征选择算法:SBS与SFS的实现及其应用场景

    内容概要:本文详细介绍了基于MATLAB实现的两种经典特征选择算法——向后搜索(SBS)和向前搜索(SFS)。首先通过构造简单的虚拟数据集展示了这两个算法的基本思想和实现步骤。接着深入探讨了SBS和SFS的具体实现方式,包括特征集的初始化、特征的选择/剔除机制以及评价函数的设计。文中还提供了具体的MATLAB代码示例,帮助读者更好地理解和应用这两种算法。此外,文章讨论了SBS和SFS的特点和局限性,并给出了在实际工程项目中的选型建议。 适合人群:对特征选择有一定兴趣并希望深入了解SBS和SFS算法的初学者,尤其是那些希望通过MATLAB进行特征选择研究的人群。 使用场景及目标:适用于需要从大量特征中挑选出最具影响力的少数特征的情况,如生物医学数据分析、图像识别等领域。主要目标是提高模型性能的同时减少计算成本。 其他说明:尽管SBS和SFS属于较为基础的特征选择方法,在现代工业级项目中已被更先进的算法所替代,但对于理解特征选择的基本原理仍然非常重要。同时,文章强调了评价函数设计的重要性,并指出在实际应用中应综合考虑业务背景和技术因素。

    《毛毛虫的袜子》伴奏.mp3

    《毛毛虫的袜子》伴奏.mp3

    基于COMSOL仿真的石墨烯多槽结构宽谱吸收特性研究

    内容概要:本文详细介绍了利用COMSOL软件对多槽结构石墨烯宽谱吸收特性的仿真分析过程。首先阐述了石墨烯作为二维材料在中红外到太赫兹波段的独特优势及其宽谱吸收的应用前景。接着,描述了多槽结构的设计原理,即通过周期性排列的石墨烯纳米条带来调控电磁波的相位和振幅,进而提高吸收效率。文中逐步讲解了如何在COMSOL中建立二维模型,设置材料参数(如导电率和介电常数),定义周期性边界条件,以及配置边界条件和激励源。此外,还探讨了仿真过程中可能出现的问题及解决方案,例如材料参数的选择、周期间距对吸收带宽的影响等。最后,展示了仿真结果,包括吸收谱曲线,并讨论了与文献结果的差异及改进措施。 适用人群:从事光学超材料设计、电磁波调控研究的专业人士,尤其是对石墨烯宽谱吸收感兴趣的科研工作者和技术爱好者。 使用场景及目标:适用于希望通过COMSOL仿真平台深入了解石墨烯多槽结构宽谱吸收特性的研究人员。目标是掌握从模型搭建到结果分析的全流程,能够独立完成类似仿真项目,为进一步优化石墨烯基器件提供理论支持。 其他说明:文中提供了若干关键代码片段,涵盖材料参数设置、周期性边界处理、吸收率计算等方面的技术细节,有助于读者快速上手实践。同时强调了几何结构设计的重要性,并给出了一些实用技巧,如非均匀采样策略、PML设置等,帮助提高仿真的准确性和效率。

Global site tag (gtag.js) - Google Analytics