1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>;1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>;1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >;“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >;“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
AND cust.postcode>;“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>;“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号 零件描述 其他列
(part_num) (part_desc) (other column)
102,032 Seageat 30G disk ……
500,049 Novel 10M network card ……
……
2.vendor表
厂商号 厂商名 其他列
(vendor _num) (vendor_name) (other column)
910,257 Seageat Corp ……
523,045 IBM Corp ……
……
3.parven表
零件号 厂商号 零件数量
(part_num) (vendor_num) (part_amount)
102,032 910,257 3,450,000
234,423 321,001 4,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE part.part_num=parven.part_num
AND parven.vendor_num = vendor.vendor_num
ORDER BY part.part_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表 行尺寸 行数量 每页行数量 数据页数量
(table) (row size) (Row count) (Rows/Pages) (Data Pages)
part 150 10,000 25 400
Vendor 150 1,000 25 40
Parven 13 15,000 300 50
索引 键尺寸 每页键数量 页面数量
(Indexes) (Key Size) (Keys/Page) (Leaf Pages)
part 4 500 20
Vendor 4 500 2
Parven 8 250 60
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。
实际上,我们可以通过使用临时表分3个步骤来提高查询效率:
1.从parven表中按vendor_num的次序读数据:
SELECT part_num,vendor_num,price
FROM parven
ORDER BY vendor_num
INTO temp pv_by_vn
这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。
2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序:
SELECT pv_by_vn,* vendor.vendor_num
FROM pv_by_vn,vendor
WHERE pv_by_vn.vendor_num=vendor.vendor_num
ORDER BY pv_by_vn.part_num
INTO TMP pvvn_by_pn
DROP TABLE pv_by_vn
这个查询读取pv_by_vn(50页),它通过索引存取vendor表1.5万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表(40+2=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。
3.把输出和part连接得到最后的结果:
SELECT pvvn_by_pn.*,part.part_desc
FROM pvvn_by_pn,part
WHERE pvvn_by_pn.part_num=part.part_num
DROP TABLE pvvn_by_pn
这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表1.5万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1。笔者在Informix Dynamic Sever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。
小 结
20%的代码用去了80%的时间,这是程序设计中的一个著名定律,在数据库应用程序中也同样如此。我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。
分享到:
相关推荐
数据库查询优化是数据库管理系统中的关键环节,其目的是在满足用户查询需求的同时,尽可能地提高查询效率,减少资源消耗。在数据库领域,有三种经典的查询优化算法:基于成本的优化、基于规则的优化以及动态规划优化...
"遗传算法和实时数据库规则结合的数据库查询优化方案设计" 本文旨在结合遗传算法和实时数据库规则,设计一个数据库查询优化方案。数据库的建立是实现各种类型事务查询的关键,而现有的查询处理系统无法满足实时...
### 分布式数据库查询优化详解 #### 一、背景与挑战 随着信息技术的快速发展和各行各业对数据处理需求的增加,数据库系统面临着前所未有的挑战。一方面,数据量的急剧增长要求数据库具备更高的存储能力和更快的...
### 数据库查询优化的核心知识点 #### 一、查询优化的重要性 数据库查询优化是数据库管理系统(DBMS)中的关键组件,其目标在于选择最有效的查询执行计划,以最小化资源消耗(如CPU时间、I/O操作)并提高响应速度。...
分布式数据库查询优化算法综述,介绍了分布式数据库查询优化的基本思想
Oracle数据库查询优化是数据库管理中的关键环节,它旨在提高数据检索速度,降低系统资源消耗,提升整体系统性能。本文将深入探讨Oracle数据库查询优化的各种方法和技术。 首先,我们从SQL语句的编写入手。良好的SQL...
数据库查询优化器的艺术,深入剖析数据库查询器实现源码及原理。
第2课 数据库查询优化技术总揽 综述查询优化技术范围,包括查询重用、查询重写规则、查询算法优化、并行查询优化等 综述逻辑查询优化,包括子查询的优化、视图重写、等价谓词重写、条件化简、连接消除、非SPJ的优化...
本文档描述了数据库中如何对数据库进行查询优化的技术。。。。
分布式数据库查询优化是关系数据库管理系统领域中的一个重要课题,它直接影响到数据库系统的性能,尤其在处理大量数据和复杂查询时,高效的查询优化算法可以显著减少查询响应时间,提高系统吞吐量。本文讨论的基于半...
"浅析分布式数据库查询优化" 分布式数据库查询优化是分布式数据库系统中的一个关键技术,旨在提高分布式数据库查询的性能和效率。分布式数据库系统是一个物理上分散而逻辑上集中的数据库系统,使用计算机网络将地理...
研究粒子群算法在数据库查询优化中的应用问题。为了解决大型数据库信息检索困难、查询效率低的问题,提出了一种基于粒子群算法优化数据库查询技术方案。算法提出了一种数据库查询执行计划代价模型,主要包括了查询多...
本项目是一个基于Java语言开发的Sagacity SQLToy数据库查询优化工具,包含420个文件,主要文件类型包括Java源代码、XML配置文件、BAT批处理文件、文本文件、Git忽略文件、Markdown文档、图片、属性文件和XSD文件。...
MySQL 数据库查询优化方案 MySQL 数据库查询优化是指对数据库中的查询语句进行优化,以提高查询效率和数据库性能。以下是 MySQL 数据库查询优化的一些重要知识点: 一、索引相关 索引是 MySQL 数据库查询优化的...
数据库查询优化是数据库管理系统中的一个核心问题,尤其是在涉及大量数据和复杂查询时,高效的查询优化对于减少数据检索时间、提高数据库整体性能至关重要。传统的粒子群优化算法(Particle Swarm Optimization, PSO...
### SQL Server数据库查询优化方法探究 #### 一、数据库查询优化的重要性 在当前数据库系统中,查询操作占据了核心地位。随着数据库技术的进步和数据量的增长,如何优化SQL查询语句成为了提升系统性能的关键所在。...
传统的查询树优化方法,即基于左线性树、右线性树、浓密树、操作森林的并行数据库查询优化方法,各有优劣,对其的研究比较深入、成熟;基于多重加权树的查询优化方法,研究了其并行查询计划模型、并行查询计划的复杂...
数据库查询优化是数据库管理系统中的关键环节,它直接影响到应用程序的性能和用户体验。本文将深入探讨这一主题,并结合课程设计的角度,提供一些实用的优化策略。 首先,我们需要理解数据库系统的基本概念。数据库...
关系数据库查询优化是数据库管理系统中的核心任务,它涉及到如何高效地执行SQL语句,从而提高系统性能和响应时间。本教材主要围绕查询处理的各个方面展开,包括查询处理的定义、执行步骤、相关基本概念以及查询优化...