`

计算机视觉代码合集

 
阅读更多

参考:http://blog.sciencenet.cn/blog-722391-569547.html

 

UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下:

 
这些代码很实用,可以让我们站在巨人的肩膀上~~
 
Topic Resources References
Feature Extraction
  1. D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
  2. Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
  3. J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparisonSIAM Journal on Imaging Sciences, 2009. [PDF]
  4. H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features,ECCV, 2006. [PDF]
  5. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectorsIJCV, 2005. [PDF]
  6. J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regionsBMVC, 2002. [PDF]
  7. A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]
  8. E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]
  9. T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and DetectionCVPR 2010. [PDF]
  10. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]
  11. A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelopeIJCV, 2001. [PDF]
  12. S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contextsPAMI, 2002. [PDF]
  13. K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene RecognitionPAMI, 2010.
  14. I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]
  15. J. Kim and K. Grauman, Boundary Preserving Dense Local RegionsCVPR 2011. [PDF]
Image Segmentation



  1. J. Shi and J Malik, Normalized Cuts and Image SegmentationPAMI, 2000 [PDF]
  2. X. Ren and J. Malik. Learning a classification model for segmentation.ICCV, 2003. [PDF]
  3. P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image SegmentationIJCV 2004. [PDF]
  4. D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space AnalysisPAMI 2002. [PDF]
  5. P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image SegmentationPAMI, 2011. [PDF]
  6. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric FlowsPAMI 2009. [PDF]
  7. A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking,ECCV, 2008. [PDF]
  8. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]
  9. A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data CompressionCVIU, 2007. [PDF]
  10. S. Maji, N. Vishnoi and J. Malik, Biased Normalized CutCVPR 2011
  11. E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,”  ACCV 2009. [PDF]
  12. N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]
  13. M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]
Object Detection
  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones's Face Detection [6] [Project]
  1. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]
  2. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based ModelsPAMI, 2010 [PDF]
  3. P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part ModelsCVPR 2010 [PDF]
  4. L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose AnnotationsICCV 2009 [PDF]
  5. B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and SegmentationIJCV, 2008. [PDF]
  6. P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple FeaturesCVPR 2001. [PDF]
Saliency Detection
  • Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  • Global Contrast based Salient Region Detection [12] [Project]
  1. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysisPAMI, 1998. [PDF]
  2. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]
  3. R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]
  4. N. Bruce and J. Tsotsos. Saliency based on information maximization. InNIPS, 2005. [PDF]
  5. S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. [PDF]
  6. J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]
  7. X. Hou and L. Zhang. Saliency detection: A spectral residual approach.CVPR, 2007. [PDF]
  8. E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videosCVPR, 2010. [PDF]
  9. L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statisticsJournal of Vision, 2008. [PDF]
  10. D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered ScenesNIPS, 2004. [PDF]
  11. T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans LookICCV, 2009. [PDF]
  12. M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region DetectionCVPR 2011.
Image Classification
  1. K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image FeaturesICCV 2005. [PDF]
  2. S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesCVPR 2006[PDF]
  3. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image ClassificationCVPR, 2010 [PDF]
  4. J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image ClassificationCVPR, 2009 [PDF]
  5. M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]
  6. A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object DetectionICCV, 2009. [PDF]
  7. P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]
  8. J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels
    , ECCV 2010. [PDF]
Category-Independent Object Proposal
  • Objectness measure [1] [Code]

  • Parametric min-cut [2] [Project]

  • Object proposal [3] [Project]

  1. B. Alexe, T. Deselaers, V. Ferrari, What is an Object?CVPR 2010 [PDF]
  2. J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object SegmentationCVPR 2010. [PDF]
  3. I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]
MRF
  1. Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]
Shadow Detection
  • Shadow Detection using Paired Region [Project]

  • Ground shadow detection [Project]

  1. R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
  2. J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer PhotographsECCV 2010 [PDF]
Optical Flow
  1. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  2. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  3. C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral ThesisMIT 2009. [PDF]
  4. B.K.P. Horn and B.G. Schunck, Determining Optical FlowArtificial Intelligence 1981. [PDF]
  5. M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]
  6. D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principlesCVPR 2010. [PDF]
  7. T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimationPAMI, 2010 [PDF]
  8. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warpingECCV 2004 [PDF]
Object Tracking
  • Particle filter object tracking [1] [Project]

  • KLT Tracker [2-3] [Project]

  • MILTrack [4] [Code]

  • Incremental Learning for Robust Visual Tracking [5] [Project]

  • Online Boosting Trackers [6-7] [Project]

  • L1 Tracking [8] [Matlab code]

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
  2. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  3. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  4. B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance LearningPAMI 2011 [PDF]
  5. D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual TrackingIJCV 2007 [PDF]
  6. H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  7. H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust TrackingECCV 2008 [PDF]
  8. X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]
Image Matting
  • Closed Form Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]

  1. A. Levin D. Lischinski and Y. WeissA Closed Form Solution to Natural Image MattingPAMI 2008 [PDF]
  2. A. Levin, A. Rav-Acha, D. Lischinski. Spectral MattingPAMI 2008. [PDF]
  3. Y. Zheng and C. Kambhamettu, Learning Based Digital MattingICCV 2009 [PDF]
Bilateral Filtering
  • Fast Bilateral Filter [Project]

  • Real-time O(1) Bilateral Filtering [Code]

  • SVM for Edge-Preserving Filtering [Code]

  1. Q. Yang, K.-H. Tan and N. Ahuja,  Real-time O(1) Bilateral Filtering
    CVPR 2009. [PDF]
  2. Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering
    CVPR 2010. [PDF]
Image Denoising  
Image Super-Resolution
  • MRF for image super-resolution [Project]

  • Multi-frame image super-resolution [Project]

  • UCSC Super-resolution [Project]

  • Sprarse coding super-resolution [Code]

 
Image Deblurring
  • Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

  • Analyzing spatially varying blur [Project]

  • Radon Transform [Code]

 
Image Quality Assessment
  1. L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality AssessmentTIP 2011. [PDF]
  2. N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation ModelTIP 2000. [PDF]
  3. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]
  4. B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA)ICIP 2008. [PDF]
Density Estimation
  • Kernel Density Estimation Toolbox [Project]
 
Dimension Reduction  
Sparse Coding    
Low-Rank Matrix Completion    
Nearest Neighbors matching  
Steoreo
  1. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithmsIJCV 2002 [PDF]
Structure from motion

 

  1. N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3DSIGGRAPH, 2006. [PDF]
Distance Transformation
  • Distance Transforms of Sampled Functions [1] [Project]
  1. P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functionsTechnical report, Cornell University, 2004. [PDF]
Chamfer Matching
  • Fast Directional Chamfer Matching [Code]
  1. M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer MatchingCVPR 2010 [PDF]
Clustering  
Classification  
Regression
  • SVM

  • RVM

  • GPR

 
Multiple Kernel Learning (MKL)
  1. S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learningJMLR, 2006. [PDF]
  2. F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]
  3. F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learningCVPR, 2010. [PDF]
  4. A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimplemklJMRL, 2008. [PDF]
Multiple Instance Learning (MIL)
  1. C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized TreesECCV 2010. [PDF]
  2. Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selectionPAMI 2010. [PDF]
  3. Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance SelectionPAMI 2006 [PDF]
  4. Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with RegionsJMLR 2004. [PDF]
Other Utilities
  • Code for downloading Flickr images, by James Hays [Code]

  • The Lightspeed Matlab Toolbox by Tom Minka [Code]

  • MATLAB Functions for Multiple View Geometry [Code]

  • Peter's Functions for Computer Vision [Code]

  • Statistical Pattern Recognition Toolbox [Code]
 

 

Useful Links (dataset, lectures, and other softwares)

Conference Information

Papers

Datasets

Lectures

Source Codes

 

 

欢迎关注微信公众号——计算机视觉:

 

分享到:
评论

相关推荐

    opencv2计算机视觉编程手册-源代码

    总结起来,《OpenCV2计算机视觉编程手册》的源代码是学习和实践计算机视觉技术的宝贵资源。它不仅能帮助初学者快速入门,也能为有经验的开发者提供参考和灵感。通过这些代码,你可以深入探究OpenCV2的内部工作机制,...

    OpenCV 3计算机视觉 Python语言实现第二版示例代码

    OpenCV 3是一种先进的计算机视觉库,可以用于各种图像和视频处理操作,通过OpenCV 3 能很容易地实现一些有前景且功能先进的应用(比如:人脸识别或目标跟踪等)。理解与计算机视觉相关的算法、模型以及OpenCV 3 API...

    OpenCV 4计算机视觉项目实战(原书第2版)_源代码

    《OpenCV 4计算机视觉项目实战(原书第2版)》是一本深入探讨计算机视觉技术的书籍,其源代码提供了丰富的实践示例,帮助读者理解并应用OpenCV库进行图像处理、对象检测、图像识别等任务。OpenCV是目前广泛应用的...

    深入理解OpenCV 实用计算机视觉项目解析-源代码

    《深入理解OpenCV:实用计算机视觉项目解析-源代码》是一本专注于OpenCV库的实践教程,涵盖了九个章节的源代码,旨在帮助读者通过实际项目深入理解和掌握计算机视觉技术。OpenCV(开源计算机视觉库)是计算机视觉...

    计算机视觉图像处理Opencv基础知识(附详解代码)上 计算机视觉.pdf

    计算机视觉图像处理Opencv基础知识 计算机视觉图像处理是人工智能和机器学习领域中的一个重要方向,Opencv是计算机视觉领域中最流行的开源库之一。本文将介绍Opencv基础知识,包括图像读取、显示、合并、边界填充、...

    MATLAB计算机视觉与深度学习实战-运行代码

    《MATLAB计算机视觉与深度学习实战-运行代码》是一份深度学习与图像处理领域的实践教程,专注于使用MATLAB这一强大的编程环境进行计算机视觉任务的实现。该资源包含了多个章节的实例,涵盖了从基础的图像处理到高级...

    Python-深度学习与计算机视觉配套代码

    《深度学习与计算机视觉》配套代码

    python计算机视觉_源码

    本资源提供了《Python计算机视觉》一书的源代码,帮助读者深入理解并实践书中的算法和应用。 1. OpenCV(开源计算机视觉库):OpenCV是Python计算机视觉最常用的库之一,提供了丰富的图像和视频处理函数。通过...

    python计算机视觉编程源代码 PCV库使用案例.rar

    本压缩包包含的资源是关于使用PCV(可能是Personal Computer Vision)库的源代码示例,这个库可能是为了简化计算机视觉任务而设计的一个Python工具包。下面我们将深入探讨这些知识点。 首先,我们看到`LICENSE.txt`...

    计算机视觉人脸识别入门示例代码

    在这个"计算机视觉人脸识别入门示例代码"中,我们将深入探讨如何利用TensorFlow和OpenCV这两个强大的库来实现人脸识别。 TensorFlow是Google开发的一款开源的深度学习框架,它允许开发者构建和部署复杂的神经网络...

    code-master_计算机视觉代码_

    本资料包"code-master_计算机视觉代码_"汇聚了九个精心设计的C++项目,旨在帮助开发者深入理解并掌握计算机视觉的核心技术,提升实际应用能力。 1. **基础理论与库的运用** 在这些项目中,开发者将接触到OpenCV库...

    精品--《深度学习之PyTorch实战计算机视觉》全书代码.zip

    精品--《深度学习之PyTorch实战计算机视觉》全书代码

    中文python计算机视觉编程 代码

    本讨论将深入探讨“中文python计算机视觉编程”这一主题,以及可能包含在“pcv-book-code-master”压缩包中的相关代码示例。 首先,让我们了解计算机视觉的基本概念。计算机视觉的目标是让机器“看”并理解这个世界...

    Matlab计算机视觉图像处理工具箱推荐 计算机视觉.pdf

    Matlab计算机视觉图像处理工具箱推荐 Matlab是计算机视觉和图像处理领域中常用的开发语言, mặc dù它自带了图像处理和计算机视觉的许多功能,但是术业有专攻,在进行深入的视觉算法研究的时候Matlab的自带功能...

    基于OpenCV的计算机视觉技术实现-代码

    本篇文章将深入探讨基于OpenCV的计算机视觉技术实现,并通过代码示例来阐述其主要功能。 一、OpenCV简介 OpenCV是一个开源的跨平台库,最初由Intel开发,现在由全球的开发者社区维护。它支持C++、Python、Java等...

    计算机视觉答案.pdf

    因此,我将基于“计算机视觉答案.pdf”这个标题和描述,以及计算机视觉领域的常见知识点来撰写这篇文章。 计算机视觉是人工智能领域的一个重要分支,它研究如何使机器能够“看”或解释其环境的视觉信息。这项技术...

    opencv3计算机视觉python语言实现代码

    压缩包中的文件名暗示了书中包含的实例代码,如“opencv3计算机视觉python语言实现代码”可能对应的就是整本书的代码集合,读者可以根据章节逐步学习并运行这些代码,以便更好地理解和掌握OpenCV3在Python中的实际...

    基于深度学习的计算机视觉:原理与实践 深度学习原理.pdf

    基于深度学习的计算机视觉:原理与实践 计算机视觉是人工智能领域最活跃的领域之一,基于深度学习的计算机视觉是其核心组成部分。该领域的发展日新月异,网络模型和算法层出不穷。本课程旨在help学生快速入门并达到...

Global site tag (gtag.js) - Google Analytics