- 浏览: 386333 次
- 性别:
- 来自: 深圳
文章分类
最新评论
-
zjx20:
...
非阻塞(nonblock)socket接口会否出现EINTR错误 -
mrfeng:
Digest 方式呢?
构建RESTful Web Service - 验证的实现和使用(HTTP 基本认证) -
lck140:
lck140 写道我照着楼主的方法试了一天了,根本就不行。是不 ...
nginx 预压缩(gzip)静态文件 -
lck140:
我照着楼主的方法试了一天了,根本就不行。是不是有哪没弄好,请高 ...
nginx 预压缩(gzip)静态文件 -
iwlk:
chrome 是支持gzip的, 只是添加了sdch~ 大家 ...
nginx 预压缩(gzip)静态文件
延续上次的实验,http://willko.iteye.com/blog/407964
200m记录,innodb
先从小量查询开始实验,只考虑随机情况,毕竟生产环境比较少出现顺序.
20个值的情况
50个值的情况
500个值的情况
在一张只有100k记录的表上实验
注意,即使使用union,query cache还是按照整条sql来算的。
看到这样的结果,我想大家都有结论了,使用n+1比用in快n倍,估计上次实验有问题,,我们来看看他们的执行过程
这是in的情况
n+1情况
in的话主要耗费在sending data上,而n+1比较稳定并且比in多了临时表,sending data包括索引的查找以及数据的传输,我想in慢在查找上,因为是innodb而且是主键,只要找到主键就可以得到数据。
至于,in是怎么实现查找的,这个就不清楚了。
郁闷
这次,我调整了一下配置。。。
200m记录,innodb
先从小量查询开始实验,只考虑随机情况,毕竟生产环境比较少出现顺序.
20个值的情况
| 3 | 0.23469200 | SELECT * FROM Member WHERE MemberID IN (1072317,944960,232144,1221849,1718824,1971030,1634860,219179,1733544,618875,1033368,914264,1657167,687934,2164378,1675400,816727,1072638,56834,798724) | | 4 | 0.00271600 | SELECT * FROM Member WHERE MemberID = 1072317 UNION SELECT * FROM Member WHERE MemberID = 944960 UNION SELECT * FROM Member WHERE MemberID = 232144 UNION SELECT * FROM Member WHERE MemberID = 1221849 UNION SELECT * FROM Member WHERE MemberID = 1718824 UNION SELECT * FROM Member WHERE MemberID = 1971 |
50个值的情况
| 3 | 0.23469200 | SELECT * FROM Member WHERE MemberID IN (1072317,944960,232144,1221849,1718824,1971030,1634860,219179,1733544,618875,1033368,914264,1657167,687934,2164378,1675400,816727,1072638,56834,798724) | | 4 | 0.00271600 | SELECT * FROM Member WHERE MemberID = 1072317 UNION SELECT * FROM Member WHERE MemberID = 944960 UNION SELECT * FROM Member WHERE MemberID = 232144 UNION SELECT * FROM Member WHERE MemberID = 1221849 UNION SELECT * FROM Member WHERE MemberID = 1718824 UNION SELECT * FROM Member WHERE MemberID = 1971 |
500个值的情况
| 11 | 4.89638400 | SELECT * FROM Member WHERE MemberID IN (1940366,1592700,1400564,745603,439521,1782230,1627418,1968030,1173113,1406275,1157786,382329,1252380,2202431,2142859,714044,1178282,1463622,1069076,955140,2071311,647081,619895,154986,1068419,1900229,1792226,1796517,1568490,687304,2059599,912862,1797395,168722 | | 12 | 0.07686600 | SELECT * FROM Member WHERE MemberID = 1940366 UNION SELECT * FROM Member WHERE MemberID = 1592700 UNION SELECT * FROM Member WHERE MemberID = 1400564 UNION SELECT * FROM Member WHERE MemberID = 745603 UNION SELECT * FROM Member WHERE MemberID = 439521 UNION SELECT * FROM Member WHERE MemberID = 1782 |
在一张只有100k记录的表上实验
| 18 | 0.12457700 | SELECT * FROM Product WHERE ProductID IN (11089,108843,80895,6486,91179,109813,97611,49713,90237,56495,114315,773,119650,55401,8965,61268,60379,13692,114931,71883) | | 19 | 0.00348100 | SELECT * FROM Product WHERE ProductID = 11089 UNION SELECT * FROM Product WHERE ProductID = 108843 UNION SELECT * FROM Product WHERE ProductID = 80895 UNION SELECT * FROM Product WHERE ProductID = 6486 UNION SELECT * FROM Product WHERE ProductID = 91179 UNION SELECT * FROM Product WHERE ProductID = | | 20 | 0.35769600 | SELECT * FROM Product WHERE ProductID IN (52447,28980,59590,80193,98487,22829,78756,70810,86308,60046,81279,67714,99244,89245,69998,48611,81038,17256,45283,119693,108364,97453,47837,81514,457,26157,115691,13263,102098,101610,38318,32815,101610,45720,31842,90977,53938,86167,6973,3819,22670,81914,8805 | | 21 | 0.00640500 | SELECT * FROM Product WHERE ProductID = 52447 UNION SELECT * FROM Product WHERE ProductID = 28980 UNION SELECT * FROM Product WHERE ProductID = 59590 UNION SELECT * FROM Product WHERE ProductID = 80193 UNION SELECT * FROM Product WHERE ProductID = 98487 UNION SELECT * FROM Product WHERE ProductID = |
注意,即使使用union,query cache还是按照整条sql来算的。
看到这样的结果,我想大家都有结论了,使用n+1比用in快n倍,估计上次实验有问题,,我们来看看他们的执行过程
这是in的情况
+--------------------------------+----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +--------------------------------+----------+----------+------------+--------------+---------------+ | starting | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000048 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000011 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000019 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000039 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000047 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000009 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.234442 | 0.002000 | 0.001000 | 0 | 0 | | end | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | | storing result in query cache | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | +--------------------------------+----------+----------+------------+--------------+---------------+
n+1情况
+--------------------------------+----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +--------------------------------+----------+----------+------------+--------------+---------------+ | starting | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000123 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000573 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000607 | 0.001000 | 0.000000 | 0 | 0 | | optimizing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000057 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000033 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000017 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000021 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000030 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000029 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000032 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000021 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000033 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000027 | 0.000999 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000029 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000017 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000018 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000034 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000019 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000032 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000010 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000143 | 0.000000 | 0.000000 | 0 | 0 | | removing tmp table | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000048 | 0.000000 | 0.000000 | 0 | 0 | | storing result in query cache | 0.000018 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000001 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000043 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | +--------------------------------+----------+----------+------------+--------------+---------------+
in的话主要耗费在sending data上,而n+1比较稳定并且比in多了临时表,sending data包括索引的查找以及数据的传输,我想in慢在查找上,因为是innodb而且是主键,只要找到主键就可以得到数据。
至于,in是怎么实现查找的,这个就不清楚了。
郁闷
评论
2 楼
willko
2009-07-08
mayongzhan 写道
测试200w的数据.是n+1的方法速度快.不知道你上次的实验是怎么做出来的,不过这n+1代码太恶心了..语句太长了.
希望能出现第三篇总结的文章.
希望能出现第三篇总结的文章.
这次,我调整了一下配置。。。
1 楼
mayongzhan
2009-07-06
测试200w的数据.是n+1的方法速度快.不知道你上次的实验是怎么做出来的,不过这n+1代码太恶心了..语句太长了.
希望能出现第三篇总结的文章.
希望能出现第三篇总结的文章.
发表评论
-
High Performance MySQL 笔录(schema/index 部分)
2010-05-19 18:49 7196主要记录阅读High Performance MySQL后新发 ... -
FYI, MySQL高效分页
2010-03-05 17:23 6357在Percona Performance Conferen ... -
更改MySQL log size导致的问题
2009-09-13 12:59 4096一db对innodb表执行dml操作出现错误: ERROR 1 ... -
改善InnoDB恢复的时间
2009-07-08 22:35 2004InnoDB的恢复速度是一个 ... -
mysql中批量查询使用in还是n+1?
2009-06-14 01:45 4858某日,在一LAMP群里,讨论这个,有些人倾向于in,有些人倾向 ... -
http://www.day32.com/MySQL/
2009-04-15 09:11 0http://www.day32.com/MySQL/ -
启动mysql出现错误,找不到系统表
2009-03-22 02:05 3755之前的服务器被别人拿了,所以自己买了台美国vps,根据笔记安装 ... -
XtraBackup
2009-03-19 09:29 0备份备份备份备份备份备份备份备份备份备份备份 -
mysql 随机获取记录 order by rand 优化
2009-02-28 16:07 25075如果要随机获取记录数,在mysql里最简单的方法肯定是orde ... -
mysql分页limit 优化
2009-02-09 12:55 31048mysql的分页比较简单,只需要limit offset,le ... -
安装mysql5 innodb存储引擎
2009-02-08 20:11 3581今天把mysql5.0升级到5.1.30,发现配置的时候出错了 ... -
整合编译mysql和tcmalloc失败的原因
2009-02-08 10:41 6047google-perftools里的tcmalloc比glib ... -
设置合适的 InnoDB 日志文件大小的计算方法
2009-02-08 10:37 2123做下笔记,简单记录一下,InnoDB日志文件太大,会影响MYS ...
相关推荐
关系型数据库+Mysql+查询用户连续登陆天数+数据统计 关系型数据库+Mysql+查询用户连续登陆天数+数据统计 关系型数据库+Mysql+查询用户连续登陆天数+数据统计 关系型数据库+Mysql+查询用户连续登陆天数+数据统计 关系...
MySQL查询语句汇总+编程知识+开发技术; MySQL查询语句汇总+编程知识+开发技术; MySQL查询语句汇总+编程知识+开发技术; MySQL查询语句汇总+编程知识+开发技术; MySQL查询语句汇总+编程知识+开发技术; MySQL查询...
#### 七、在多线程程序中使用 MySQL++ **7.1 构建问题** - **目的**:解决在多线程环境中构建 MySQL++ 的常见问题。 - **代码**:例如,配置编译选项。 **7.2 连接管理** - **目的**:说明如何在多线程环境下管理...
B+ 树是 MySQL 中使用的索引结构。B+ 树的每个节点可以有多个子树,且每个节点的子树可以有多个叶节点。B+ 树的高度远远小于 AVL 树和红黑树,磁盘 IO 次数大大减少。B+ 树的定义中最重要的概念是阶数(Order),...
mysql查询语句汇总,数据库查询指令:mysql查询语句汇总+编程知识+技术开发;mysql查询语句汇总,数据库查询指令:mysql查询语句汇总+编程知识+技术开发;mysql查询语句汇总,数据库查询指令:mysql查询语句汇总+...
"mfc中使用mysql++"这个主题就是关于如何在MFC应用中集成MySQL++库,以便能方便地操作MySQL数据库。MySQL++是一个C++封装库,它为MySQL数据库提供了易于使用的接口。 首先,你需要确保已经安装了Visual Studio (VS)...
首先,我们来看一下如何在C++中使用MySQL++ API来连接和查询数据库。基本步骤包括初始化库,创建数据库连接,执行SQL语句,处理结果集,以及关闭连接。以下是一个简单的示例: ```cpp #include <mysql++.h> using ...
php+mysql学生成绩查询(系统+源码) php+mysql学生成绩查询(系统+源码) php+mysql学生成绩查询(系统+源码) ...vphp+mysql学生成绩查询(系统+源码) php+mysql学生成绩查询(系统+源码) php+mysql学生成绩查询
在数据库管理中,N+1查询问题是一种常见的性能瓶颈,特别是在使用ORM(对象关系映射)框架如Hibernate或MyBatis时。这个问题出现在当我们需要获取一个对象及其关联对象时,通常会先执行一次主查询获取主对象,然后对...
php+mysql+html实例php+mysql+html实例php+mysql+html实例php+mysql+html实例php+mysql+html实例php+mysql+html实例php+mysql+html实例php+mysql+html实例php+mysql+html实例
【Apache+Mysql+Php+Snort+Base 实现 Snort 知识点详解】 Apache、MySQL、PHP、Snort 和 BASE 是构建一个强大的入侵检测系统(IDS)的基础组件。这个组合使得网络管理员能够实时监控网络流量,检测潜在的攻击,并...
基于SSM框架+JSP+Ajax请求 mysql数据 关于员工信息的新增+修改+查询+删除基于SSM框架+JSP+Ajax请求 mysql数据 关于员工信息的新增+修改+查询+删除基于SSM框架+JSP+Ajax请求 mysql数据 关于员工信息的新增+修改+查询+...
MySQL++ 是一个C++库,它为MySQL数据库提供了一种方便的接口,使得开发者能够使用C++语言编写MySQL数据库相关的应用程序。这篇文档将详细介绍如何在Windows环境下,利用Visual Studio 2008来安装和使用MySQL++。 ...
在IT领域,"Apache+MySQL+PHP"是一个经典的Web开发环境组合,被称为LAMP(Linux, Apache, MySQL, PHP)的Windows版本,这里为WAMP(Windows, Apache, MySQL, PHP)。这个组合提供了强大的功能,使得开发者能够在本地...
在文档中,我们可以看到它详细介绍了 MySQL++ 的历史、如何使用、如何处理常见问题、连接对象、查询对象、结果集、异常处理、模板查询、特殊 SQL 结构以及如何在多线程程序中使用 MySQL++ 等内容。接下来我们将详细...
Django + python + mysql的在线考试系统源码 Django + python + mysql的在线考试系统源码 Django + python + mysql的在线考试系统源码 Django + python + mysql的在线考试系统源码 Django + python + mysql的...
课程实验 使用QT+Mysql 实现学生选课管理系统.zip 课程实验 使用QT+Mysql 实现学生选课管理系统.zip 课程实验 使用QT+Mysql 实现学生选课管理系统.zip 课程实验 使用QT+Mysql 实现学生选课管理系统.zip 课程实验 ...
springboot+mybatis+mysql最简单demospringboot+mybatis+mysql最简单demospringboot+mybatis+mysql最简单demospringboot+mybatis+mysql最简单demospringboot+mybatis+mysql最简单demospringboot+mybatis+mysql最简单...
这是一个java WEB小项目,用 Maven Springboot+mybatis+mysql+redis集成的小项目例子,可供新手进行参考学习,数据库是mysql 5.5 ,只是一个简单的小参考例子,测试过可以正常运行
使用 Python+Flask+MySQL+Redis 开发简单接口实例 flaskDemo 本接口项目的技术选型:Python+Flask+MySQL+Redis,通过 Python+Falsk 来开发接口,使用 MySQL 来存储用户信息,使用 Redis 用于存储token,目前为纯后端...