一、Java内存回收机制
不论哪种语言的内存分配方式,都需要返回所分配内存的真实地址,也就是返回一个指针到内存块的首地址。Java中对象是采用new或者反射的方法创建的,这些对象的创建都是在堆(Heap)中分配的,所有对象的回收都是由Java虚拟机通过垃圾回收机制完成的。GC为了能够正确释放对象,会监控每个对象的运行状况,对他们的申请、引用、被引用、赋值等状况进行监控,Java会使用有向图的方法进行管理内存,实时监控对象是否可以达到,如果不可到达,则就将其回收,这样也可以消除引用循环的问题。在Java语言中,判断一个内存空间是否符合垃圾收集标准有两个:一个是给对象赋予了空值null,以下再没有调用过,另一个是给对象赋予了新值,这样重新分配了内存空间。
二、Java内存泄露引起原因
首先,什么是内存泄露?经常听人谈起内存泄露,但要问什么是内存泄露,没几个说得清楚。内存泄露是指无用对象(不再使用的对象)持续占有内存或无用对象的内存得不到及时释放,从而造成的内存空间的浪费称为内存泄露。内存泄露有时不严重且不易察觉,这样开发者就不知道存在内存泄露,但有时也会很严重,会提示你Out of memory。
那么,Java内存泄露根本原因是什么呢?长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景。具体主要有如下几大类:
1、静态集合类引起内存泄露:
像HashMap、Vector等的使用最容易出现内存泄露,这些静态变量的生命周期和应用程序一致,他们所引用的所有的对象Object也不能被释放,因为他们也将一直被Vector等引用着。
例:
Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//
在这个例子中,循环申请Object 对象,并将所申请的对象放入一个Vector 中,如果仅仅释放引用本身(o=null),那么Vector 仍然引用该对象,所以这个对象对GC 来说是不可回收的。因此,如果对象加入到Vector 后,还必须从Vector 中删除,最简单的方法就是将Vector对象设置为null。
2、当集合里面的对象属性被修改后,再调用remove()方法时不起作用。
例:
public static void main(String[] args)
{
Set<Person> set = new HashSet<Person>();
Person p1 = new Person("唐僧","pwd1",25);
Person p2 = new Person("孙悟空","pwd2",26);
Person p3 = new Person("猪八戒","pwd3",27);
set.add(p1);
set.add(p2);
set.add(p3);
System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素!
p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变
set.remove(p3); //此时remove不掉,造成内存泄漏
set.add(p3); //重新添加,居然添加成功
System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素!
for (Person person : set)
{
System.out.println(person);
}
}
3、监听器
在java 编程中,我们都需要和监听器打交道,通常一个应用当中会用到很多监听器,我们会调用一个控件的诸如addXXXListener()等方法来增加监听器,但往往在释放对象的时候却没有记住去删除这些监听器,从而增加了内存泄漏的机会。
4、各种连接
比如数据库连接(dataSourse.getConnection()),网络连接(socket)和io连接,除非其显式的调用了其close()方法将其连接关闭,否则是不会自动被GC 回收的。对于Resultset 和Statement 对象可以不进行显式回收,但Connection 一定要显式回收,因为Connection 在任何时候都无法自动回收,而Connection一旦回收,Resultset 和Statement 对象就会立即为NULL。但是如果使用连接池,情况就不一样了,除了要显式地关闭连接,还必须显式地关闭Resultset Statement 对象(关闭其中一个,另外一个也会关闭),否则就会造成大量的Statement 对象无法释放,从而引起内存泄漏。这种情况下一般都会在try里面去的连接,在finally里面释放连接。
5、内部类和外部模块等的引用
内部类的引用是比较容易遗忘的一种,而且一旦没释放可能导致一系列的后继类对象没有释放。此外程序员还要小心外部模块不经意的引用,例如程序员A 负责A 模块,调用了B 模块的一个方法如:
public void registerMsg(Object b);
这种调用就要非常小心了,传入了一个对象,很可能模块B就保持了对该对象的引用,这时候就需要注意模块B 是否提供相应的操作去除引用。
6、单例模式
不正确使用单例模式是引起内存泄露的一个常见问题,单例对象在被初始化后将在JVM的整个生命周期中存在(以静态变量的方式),如果单例对象持有外部对象的引用,那么这个外部对象将不能被jvm正常回收,导致内存泄露,考虑下面的例子:
class A{
public A(){
B.getInstance().setA(this);
}
....
}
//B类采用单例模式
class B{
private A a;
private static B instance=new B();
public B(){}
public static B getInstance(){
return instance;
}
public void setA(A a){
this.a=a;
}
//getter...
}
显然B采用singleton模式,它持有一个A对象的引用,而这个A类的对象将不能被回收。想象下如果A是个比较复杂的对象或者集合类型会发生什么情况
三、如何确定OOM是由于内存泄露引起的
在工作中,遇到OOM,你首先要确定他是由于什么原因引起的?是因为堆空间设置太小引起还是因为内存泄露引起。实际上,内存泄露的问题可以通过增大堆空间暂时得到解决,但是他不是长久之计。
我们可以通过对应用访问峰值时堆空间利用率的分析来确定应用是否存在内存泄露,比如我们可以用JMeter来进行压力测试,我们每次对应用加压1000,一共加压10次,第一次峰值时堆使用了100M,第二次峰值时使用了200M,第三次峰值时使用了300M….那这样我们基本可以确定应用存在内存泄露。因为正常情况下,每次峰值时的堆占用率应该是差不多的,而上面的例子每次峰值时数据出入都比较大,而且是逐步增加,这不是一个正常的现象。
观察内存的使用情况,你可以使用JConsole或者VisualVM等工具,我比较喜欢从GC的日志中得到我想要的信息,每次峰值时由于堆空间吃紧,肯定会触发一次GC,我通过这几次GC记录可以明了的看到堆内存情况。我们可以通过配置JVM参数来启用一些基本的GC日志,比如-verbose:gc、-XX:+PrintGCTimeStamps、-XX:+PrintGCDetails、-Xloggc:<file>。至于如何读GC日志,我博客里有其他文章讲解,Oracle官网也有比较好的例子。
总结一下,如何确定应用存在内存泄露问题,我们需要观察峰值时的堆内存变化,比如堆的使用情况像下图一样,那肯定是存在Memory Leak了。
四. 如何定位引起内存泄露的代码
首先我们可以看发生OOM时的代码,比如上面的例子,我们大概可以知道在执行哪段代码时发生了错误,然后重点看下这部分代码。当然,那部分代码不一定就是导致OOM的代码。
接下来我们需要分析堆快照,可以为JVM配置发生OOM时出生堆快照文件(+XX:+HeapDumpOnOutOfMemoryError),或者使用jmap命令产生。注意生成堆快照文件时应用会停止运行,所以千万不要在生产环境中这么搞。
拿到堆快照文件后,我们使用Mat或者VisualVM工具进行分析。借助这些工具,我们可以根据实例数、占用大小对目前堆中的所有实例进行排序,那排在前几位的就是你要重点分析的。
前面讲的方法很容易就能找出大范围的Memory Leak代码,但是对于一些小的内存溢出问题,我们可能就比较难发现了,我的经验是先定位是哪些功能点引起的内存泄露,然后重点去压这部分功能,放大他们的影响之后再去分析。
相关推荐
计算机发展与计算机应用概述.pdf
计算机二级公共基础知识全集合.pdf
计算机机试答案.pdf
内容概要:本文详细介绍了基于STM32F103RCT6的750W全桥逆变器设计方案,涵盖硬件电路设计、软件编程以及保护机制等方面。硬件部分包括主控芯片的选择、PWM配置、Boost升压电路、PCB布局优化等;软件部分涉及并离网切换的状态机设计、过流保护、风扇控制算法、并机功能实现等。文中还分享了许多实战经验和调试技巧,如死区时间配置、电流采样方法、并网同步算法等。 适合人群:具有一定电子电路和嵌入式开发基础的技术人员,尤其是从事逆变器及相关电力电子产品开发的工程师。 使用场景及目标:适用于希望深入了解逆变器工作原理和技术实现的开发者,特别是那些需要掌握并离网切换、高效电源管理及可靠保护机制的人群。目标是帮助读者构建一个稳定可靠的逆变器系统,能够应对各种复杂的工作环境。 其他说明:本文不仅提供了详细的理论讲解,还有丰富的代码片段和实践经验分享,有助于读者更好地理解和应用相关技术。
内容概要:本文详细介绍了如何利用Simulink在MATLAB环境中搭建单相全桥逆变器的仿真模型。首先,通过构建H桥结构,连接直流电源和RL负载,并引入PWM控制器进行开关管的控制。接着,针对仿真过程中遇到的各种问题,如谐波失真、开关管直通等问题,提出了具体的解决方案,包括加入LC滤波器、设置死区时间和优化PWM参数等。此外,还探讨了通过MATLAB脚本自动化测试不同参数组合的方法,以及如何提高电压利用率和降低谐波失真。最终,通过对仿真结果的分析,验证了所提方法的有效性和优越性。 适合人群:电力电子工程师、科研人员、高校学生等对逆变器仿真感兴趣的群体。 使用场景及目标:适用于研究和开发高效、稳定的逆变器系统,旨在通过仿真手段减少实验成本,优化设计方案,提高系统的性能指标。 其他说明:文中提供了详细的建模步骤和技术细节,帮助读者更好地理解和掌握相关技术和方法。同时,强调了仿真参数的选择和优化对于获得理想仿真结果的重要性。
计算机红外通信.pdf
软考考试学习必备资料.md
基于cornerstonejs开发移动端
构建交互式图片画廊
源码
Bosch Rexroth IndraWorks Ds IndraWorks Ds 14V16.310.0
java面向对象 - 类与对象
内容概要:本文详细介绍了基于AT32平台的无感FOC(Field-Oriented Control)控制算法,特别是针对永磁同步电机(PMSM)和无刷直流电机(BLDC)的位置速度观测器实现。文章首先展示了启动策略的独特之处,即跳过传统前馈强拖阶段,直接利用矢量控制环和观测器协同启动。接着深入探讨了磁链观测器的核心算法,包括磁链积分、反正切求角度以及速度估算部分使用的改良版PLL。此外,文中还提到了容差配置模块,用于提高系统的鲁棒性和稳定性。最后,强调了模块间良好的解耦设计,使得各功能模块拥有明确的输入输出接口,增强了代码的可维护性和移植性。 适合人群:从事电机控制系统开发的技术人员,尤其是对无感FOC算法感兴趣的工程师。 使用场景及目标:适用于需要高精度、快速响应的电机控制系统开发项目,旨在提升系统的鲁棒性和稳定性,特别是在电机参数存在偏差的情况下依然能够保持良好性能。 其他说明:文章不仅提供了详细的代码实现,还分享了许多实用的经验和技术细节,如启动策略、磁链观测器的物理本质、速度估算方法等,有助于读者更好地理解和应用无感FOC算法。
计算机机房de设置与维护.pdf
《Java 面试进阶指北 》 质量很高,专为面试打造
内容概要:本文详细介绍了外转子开关磁阻电机(ER-SRM)的多目标优化方法,主要采用NSGA-II算法进行优化。文章首先解释了为什么ER-SRM比传统内转子电机更难以优化,接着展示了如何利用NSGA-II算法解决这一难题。文中提供了详细的Matlab代码,包括种群初始化、交叉变异操作、非支配排序以及目标函数的定义。此外,还讨论了优化过程中的一些注意事项,如初始种群多样性的保持、交叉变异参数的选择、目标函数的设计等。最后,通过具体的案例和图表展示了优化结果及其应用价值。 适合人群:从事电机设计与优化的研究人员和技术人员,尤其是对外转子开关磁阻电机感兴趣的读者。 使用场景及目标:适用于需要同时优化电机效率、转矩波动和制造成本等多种目标的情况。通过NSGA-II算法,可以在多个相互冲突的目标间找到最佳平衡点,从而提高电机的整体性能。 其他说明:文章不仅提供了完整的Matlab代码实现,还分享了许多实践经验,如参数设置的经验公式、常见错误及解决方案等。这对于理解和掌握NSGA-II算法的实际应用非常有帮助。
慢行智远V2.0"是一款专业的串口数据采集与信号分析软件,集成了多通道数据采集、实时波形显示、FFT频谱分析、FIR滤波处理等高级功能。软件提供直观的用户界面,支持亮色/暗色两种主题,具备强大的数据处理与可视化能力。核心功能包括: 全面的串口通信支持(多种波特率、数据位、停止位、校验位配置) 多通道(最多4通道)波形实时显示与分析 高级信号处理(FFT频谱分析、FIR滤波、信号平滑等) 智能数据管理(断行数据处理、大数据量优化) 数据记录与导出(文本、CSV、图像多种格式) 自适应界面设计(支持高DPI显示、暗色主题) 适用人群 嵌入式开发工程师:需要通过串口调试单片机、开发板等嵌入式设备 电子工程师:进行电路测试、信号采集与分析的专业人员 工业自动化技术人员:监测工业设备数据、进行状态分析 科研教育工作者:用于实验数据采集、科学研究与教学演示 医疗设备开发人员:分析生物电信号、开发医疗监测设备 物联网开发者:调试传感器网络、分析传感器数据 硬件测试工程师:进行产品质量检测、性能评估 使用场景及目标 研发调试场景 单片机开发:实时监控传感器数据、调试通信协议、观察系统运行状态等等
计算机基础- 图.pdf
内容概要:本文详细介绍了如何利用MATLAB和YALMIP工具箱构建并优化孤岛微电网的混合整数线性规划(MILP)调度模型。主要内容涵盖模型搭建的关键步骤,如定义决策变量、设置约束条件(尤其是电池充放电互斥约束)、处理光伏出力预测、设定目标函数以及选择求解器参数。文中强调了模型的实际应用场景,即在光伏板发电、电池储能和用户用电之间寻找最佳平衡,确保最小化甩负荷和发电浪费。此外,作者分享了一些实用技巧,如通过调整甩负荷惩罚系数α来优化调度策略,以及如何有效配置GUROBI求解器以缩短计算时间。 适合人群:从事电力系统优化、微电网调度研究的专业人士,以及对混合整数线性规划感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要精确控制发电、储电和用电的孤岛微电网系统。目标是在满足用户电力需求的同时,最大化利用可再生能源,减少化石燃料消耗,并延长电池使用寿命。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实现具体的建模方法。同时,作者还提到了一些常见的陷阱和优化建议,有助于提高模型性能和求解效率。
2025大模型时代的新能源汽车自动驾驶发展趋势