`
IXHONG
  • 浏览: 450245 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

zookeeper原理入门

阅读更多

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等。Zookeeper是hadoop的一个子项目,其发展历程无需赘述。在分布式应用中,由于工程师不能很好地使用锁机制,以及基于消息的协调机制不适合在某些应用中使用,因此需要有一种可靠的、可扩展的、分布式的、可配置的协调机制来统一系统的状态。Zookeeper的目的就在于此。本文简单分析zookeeper的工作原理,对于如何使用zookeeper不是本文讨论的重点。

1 Zookeeper的基本概念

1.1 角色

Zookeeper中的角色主要有以下三类,如下表所示:

系统模型如图所示:

1.2 设计目的

1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。

2 .可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。

3 .实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

4 .等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

5.原子性:更新只能成功或者失败,没有中间状态。

6 .顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。

2 ZooKeeper的工作原理

Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。

为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

每个Server在工作过程中有三种状态:

  • LOOKING:当前Server不知道leader是谁,正在搜寻

  • LEADING:当前Server即为选举出来的leader

  • FOLLOWING:leader已经选举出来,当前Server与之同步

2.1 选主流程

当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:

  1. 1 .选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;

  2. 2 .选举线程首先向所有Server发起一次询问(包括自己);

  3. 3 .选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;

  4. 4.  收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;

  5. 5.  线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。

通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.

每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图如下所示:

fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:

2.2 同步流程

选完leader以后,zk就进入状态同步过程。

  1. 1. leader等待server连接;

  2. 2 .Follower连接leader,将最大的zxid发送给leader;

  3. 3 .Leader根据follower的zxid确定同步点;

  4. 4 .完成同步后通知follower 已经成为uptodate状态;

  5. 5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。

流程图如下所示:

2.3 工作流程

2.3.1 Leader工作流程

Leader主要有三个功能:

  1. 1 .恢复数据;

  2. 2 .维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;

  3. 3 .Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。

PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。

2.3.2 Follower工作流程

Follower主要有四个功能:

  1. 1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

  2. 2 .接收Leader消息并进行处理;

  3. 3 .接收Client的请求,如果为写请求,发送给Leader进行投票;

  4. 4 .返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

  1. 1 .PING消息: 心跳消息;

  2. 2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;

  3. 3 .COMMIT消息:服务器端最新一次提案的信息;

  4. 4 .UPTODATE消息:表明同步完成;

  5. 5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;

  6. 6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。

对于observer的流程不再叙述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。


主流应用场景:

Zookeeper的主流应用场景实现思路(除去官方示例) 

(1)配置管理
集中式的配置管理在应用集群中是非常常见的,一般商业公司内部都会实现一套集中的配置管理中心,应对不同的应用集群对于共享各自配置的需求,并且在配置变更时能够通知到集群中的每一个机器。

Zookeeper很容易实现这种集中式的配置管理,比如将APP1的所有配置配置到/APP1 znode下,APP1所有机器一启动就对/APP1这个节点进行监控(zk.exist("/APP1",true)),并且实现回调方法Watcher,那么在zookeeper上/APP1 znode节点下数据发生变化的时候,每个机器都会收到通知,Watcher方法将会被执行,那么应用再取下数据即可(zk.getData("/APP1",false,null));

以上这个例子只是简单的粗颗粒度配置监控,细颗粒度的数据可以进行分层级监控,这一切都是可以设计和控制的。     
(2)集群管理 
应用集群中,我们常常需要让每一个机器知道集群中(或依赖的其他某一个集群)哪些机器是活着的,并且在集群机器因为宕机,网络断链等原因能够不在人工介入的情况下迅速通知到每一个机器。

Zookeeper同样很容易实现这个功能,比如我在zookeeper服务器端有一个znode叫/APP1SERVERS,那么集群中每一个机器启动的时候都去这个节点下创建一个EPHEMERAL类型的节点,比如server1创建/APP1SERVERS/SERVER1(可以使用ip,保证不重复),server2创建/APP1SERVERS/SERVER2,然后SERVER1和SERVER2都watch /APP1SERVERS这个父节点,那么也就是这个父节点下数据或者子节点变化都会通知对该节点进行watch的客户端。因为EPHEMERAL类型节点有一个很重要的特性,就是客户端和服务器端连接断掉或者session过期就会使节点消失,那么在某一个机器挂掉或者断链的时候,其对应的节点就会消失,然后集群中所有对/APP1SERVERS进行watch的客户端都会收到通知,然后取得最新列表即可。

另外有一个应用场景就是集群选master,一旦master挂掉能够马上能从slave中选出一个master,实现步骤和前者一样,只是机器在启动的时候在APP1SERVERS创建的节点类型变为EPHEMERAL_SEQUENTIAL类型,这样每个节点会自动被编号

我们默认规定编号最小的为master,所以当我们对/APP1SERVERS节点做监控的时候,得到服务器列表,只要所有集群机器逻辑认为最小编号节点为master,那么master就被选出,而这个master宕机的时候,相应的znode会消失,然后新的服务器列表就被推送到客户端,然后每个节点逻辑认为最小编号节点为master,这样就做到动态master选举。

Zookeeper 监视(Watches) 简介

Zookeeper C API 的声明和描述在 include/zookeeper.h 中可以找到,另外大部分的 Zookeeper C API 常量、结构体声明也在 zookeeper.h 中,如果如果你在使用 C API 是遇到不明白的地方,最好看看 zookeeper.h,或者自己使用 doxygen 生成 Zookeeper C API 的帮助文档。

Zookeeper 中最有特色且最不容易理解的是监视(Watches)。Zookeeper 所有的读操作——getData(), getChildren(), 和 exists() 都 可以设置监视(watch),监视事件可以理解为一次性的触发器, 官方定义如下: a watch event is one-time trigger, sent to the client that set the watch, which occurs when the data for which the watch was set changes。对此需要作出如下理解:

  • (一次性触发)One-time trigger

    当设置监视的数据发生改变时,该监视事件会被发送到客户端,例如,如果客户端调用了 getData("/znode1", true) 并且稍后 /znode1 节点上的数据发生了改变或者被删除了,客户端将会获取到 /znode1 发生变化的监视事件,而如果 /znode1 再一次发生了变化,除非客户端再次对 /znode1 设置监视,否则客户端不会收到事件通知。

  • (发送至客户端)Sent to the client

    Zookeeper 客户端和服务端是通过 socket 进行通信的,由于网络存在故障,所以监视事件很有可能不会成功地到达客户端,监视事件是异步发送至监视者的,Zookeeper 本身提供了保序性(ordering guarantee):即客户端只有首先看到了监视事件后,才会感知到它所设置监视的 znode 发生了变化(a client will never see a change for which it has set a watch until it first sees the watch event). 网络延迟或者其他因素可能导致不同的客户端在不同的时刻感知某一监视事件,但是不同的客户端所看到的一切具有一致的顺序。

  • (被设置 watch 的数据)The data for which the watch was set

    这意味着 znode 节点本身具有不同的改变方式。你也可以想象 Zookeeper 维护了两条监视链表:数据监视和子节点监视(data watches and child watches) getData() and exists() 设置数据监视,getChildren() 设置子节点监视。 或者,你也可以想象 Zookeeper 设置的不同监视返回不同的数据,getData() 和 exists() 返回 znode 节点的相关信息,而 getChildren() 返回子节点列表。因此, setData() 会触发设置在某一节点上所设置的数据监视(假定数据设置成功),而一次成功的 create() 操作则会出发当前节点上所设置的数据监视以及父节点的子节点监视。一次成功的 delete() 操作将会触发当前节点的数据监视和子节点监视事件,同时也会触发该节点父节点的child watch。

Zookeeper 中的监视是轻量级的,因此容易设置、维护和分发。当客户端与 Zookeeper 服务器端失去联系时,客户端并不会收到监视事件的通知,只有当客户端重新连接后,若在必要的情况下,以前注册的监视会重新被注册并触发,对于开发人员来说 这通常是透明的。只有一种情况会导致监视事件的丢失,即:通过 exists() 设置了某个 znode 节点的监视,但是如果某个客户端在此 znode 节点被创建和删除的时间间隔内与 zookeeper 服务器失去了联系,该客户端即使稍后重新连接 zookeeper服务器后也得不到事件通知。

Watch事件类型:

ZOO_CREATED_EVENT:节点创建事件,需要watch一个不存在的节点,当节点被创建时触发,此watch通过zoo_exists()设置
ZOO_DELETED_EVENT:节点删除事件,此watch通过zoo_exists()或zoo_get()设置
ZOO_CHANGED_EVENT:节点数据改变事件,此watch通过zoo_exists()或zoo_get()设置
ZOO_CHILD_EVENT:子节点列表改变事件,此watch通过zoo_get_children()或zoo_get_children2()设置
ZOO_SESSION_EVENT:会话失效事件,客户端与服务端断开或重连时触发
ZOO_NOTWATCHING_EVENT:watch移除事件,服务端出于某些原因不再为客户端watch节点时触发

分享到:
评论

相关推荐

    Zookeeper从入门到精通课程资源(未加密)

    通过学习《Zookeeper从入门到精通课程资源》,你可以深入了解Zookeeper的工作原理,掌握其核心功能,以及如何在分布式系统中有效利用Zookeeper解决实际问题。配合提供的"zookeeper视频汇总.txt",系统学习将更加高效...

    zookeeper系列1:入门

    **Zookeeper系列1:入门** Zookeeper是一款分布式协调服务,由Apache基金会开发,广泛应用于分布式系统中的数据共享、配置管理、命名服务、集群同步等场景。它的设计目标是简化分布式环境下的复杂问题,提供高可用...

    Zookeeper的原理及其应用

    Zookeeper入门及其原理介绍以及一些简单的应用

    zookeeper学习入门-搞懂这些就够了

    ### Zookeeper 学习入门知识点 #### 一、Zookeeper 概述与核心价值 - **定义**: Zookeeper 是一个高度可靠的关键值存储系统,它主要用于解决分布式环境中的一致性问题,例如配置管理、命名服务、分布式同步以及...

    分布式架构Zookeeper入门实战到底层原理剖析

    分布式架构Zookeeper入门实战到底层原理剖析

    第6章 Zookeeper 2 6.1. Zookeeper入门 2 6.1.1. 概述 2 6.1.2. 特点 3 6.1.3

    6.1. Zookeeper入门 2 6.1.1. 概述 2 6.1.2. 特点 3 6.1.3. 数据结构 4 6.1.4. 应用场景 4 6.1.5. 下载地址 6 6.2. Zookeeper安装 7 6.2.1. 本地模式安装部署 7 6.2.2. 配置参数解读 9 6.3. Zookeeper实战(开发重点...

    zookeeper入门材料.pdf

    7.3.2 Watcher异步调用原理 Zookeeper的Watcher是异步执行的,这样可以减少客户端的等待时间。 7.3.3 Watcher异常处理 在Watcher机制中,如果出现异常,Zookeeper会提供相应的处理策略。 7.4 ACL机制 ACL机制...

    zookeeper 入门学习(PPT)

    #### 三、Zookeeper 的架构与工作原理 1. **文件系统模型**:Zookeeper采用了类似Unix文件系统的结构来组织数据,每个节点(称为Znode)都可以存储有限的数据,并且可以通过路径访问。 2. **层级命名空间**:...

    zookeeper入门教程

    ### Zookeeper入门教程 #### 一、Zookeeper简介 Zookeeper是Apache基金会下的一个顶级开源项目,最初由Yahoo!实验室研发,并随后捐赠给了Apache。它为分布式应用提供了一个高效、可靠且易于使用的协同服务框架。...

    ZooKeeper入门简介及配置使用PDF

    3. **ZooKeeper的架构**:分析ZooKeeper集群的工作原理,包括主从复制、 Leader选举机制,以及如何保证在节点故障时的高可用性。 4. **安装与配置**:详述在不同操作系统上安装ZooKeeper的步骤,配置ZooKeeper的...

    Zookeeper学习资源和笔记(附代码)

    在初学者的入门过程中,理解Zookeeper的核心概念是非常重要的。首先,Zookeeper的数据模型是一个层次化的命名空间,类似于文件系统,由节点(ZNode)组成,每个节点都可以存储数据,并且可以设置访问权限。ZNode分为...

    互联网大厂必会的高薪技能之分布式架构Zookeeper入门实战到底层原理剖析

    互联网大厂必会的高薪技能之分布式架构Zookeeper入门实战到底层原理剖析

    Zookeeper Api(java)入门详解与应用场景

    **Zookeeper API(Java)入门详解** Zookeeper是一款分布式协调服务,由Apache基金会开发,它为分布式应用提供一致性服务,包括命名服务、配置管理、集群同步、分布式锁等。在Java开发中,我们通常会使用Zookeeper...

    Zookeeper中文开发指南

    **Zookeeper中文开发指南** ...总结来说,“Zookeeper中文开发指南”是一本全面介绍Zookeeper的参考资料,它将帮助开发者深入理解Zookeeper的原理、使用方法和最佳实践,对于构建和管理分布式系统具有很高的参考价值。

    java高级软件工程师教程快速入门Zookeeper+dubbo视频教程

    本套课程中,第一阶段深入Zookeeper原理和源码,分析Zookeeper的核心实现,并通过多个应用场景说明,体现出其重要性和广泛的应用性。第二阶段深入Dubbo RPC、SPI等核心功能点,列举多个示例加以应用说明,期望能够...

    zookeeper+hbase快速入门全套笔记

    ### Zookeeper快速入门知识点 #### 一、Zookeeper基本功能及应用场景 Zookeeper是一个分布式的、开放源码的协调服务,用于大型应用中管理和协调分布式环境下的服务。它提供了简单的接口来实现复杂的一致性问题,如...

    dubbo-zookeeper-spring入门例子源代码

    【标题】"dubbo-zookeeper-spring入门例子源代码"涉及的是使用Dubbo、Zookeeper和Spring框架构建分布式服务的基本实践。Dubbo是阿里巴巴开源的一个高性能、轻量级的服务治理框架,它提供了服务注册与发现、远程调用...

    分布式系统中ZooKeeper入门与实战初探

    适合人群:对于初学者和技术爱好者,尤其是从事分布式系统开发的工程师,希望通过学习和理解ZooKeeper的工作原理及其典型应用场景。 使用场景及目标:旨在帮助读者掌握ZooKeeper的基础理论知识和实际动手能力,能够...

    zookeeper入门到精通架构高级课程

    通过本文的介绍,我们不仅了解了ZooKeeper的基本概念和工作原理,还深入探讨了其实现机制以及在Hadoop、HBase和Dubbo等技术栈中的具体应用。希望读者能够通过学习掌握ZooKeeper的核心技术,并在未来的工作中发挥其...

    zookeeper+dubbo入门案例 消费方+提供方

    总的来说,本入门案例通过"students-server"和"students-client"展示了Zookeeper和Dubbo的集成使用,帮助开发者理解如何在分布式环境中实现服务的注册、发现和调用。这对于我们理解和掌握微服务架构中的服务治理具有...

Global site tag (gtag.js) - Google Analytics