- 浏览: 235883 次
- 性别:
- 来自: 南京
最新评论
-
baby8117628:
vc下mp3 IDv1和IDV2的读取 -
gezexu:
你好,我按照你的步骤一步步进行但是安装libvorbis的时候 ...
linux如何搭建强大的FFMPEG环境 -
ini_always:
帅哥,转载也把格式做好点,另外出处也要注明一下吧。。。
MP3文件格式解析
本文描述在网上能够找到的最简单,最快速的哈夫曼编码。本方法不使用任何扩展动态库,比如STL或者组件。只使用简单的C函数,比如:memset,memmove,qsort,malloc,realloc和memcpy。
因此,大家都会发现,理解甚至修改这个编码都是很容易的。
背景
哈夫曼压缩是个无损的压缩算法,一般用来压缩文本和程序文件。哈夫曼压缩属于可变代码长度算法一族。意思是个体符号(例如,文本文件中的字符)用一个特定长度的位序列替代。因此,在文件中出现频率高的符号,使用短的位序列,而那些很少出现的符号,则用较长的位序列。
编码使用
我用简单的C函数写这个编码是为了让它在任何地方使用都会比较方便。你可以将他们放到类中,或者直接使用这个函数。并且我使用了简单的格式,仅仅输入输出缓冲区,而不象其它文章中那样,输入输出文件。
bool CompressHuffman(BYTE *pSrc, int nSrcLen, BYTE *&pDes, int &nDesLen);
bool DecompressHuffman(BYTE *pSrc, int nSrcLen, BYTE *&pDes, int &nDesLen);
要点说明
速度
为了让它(huffman.cpp)快速运行,我花了很长时间。同时,我没有使用任何动态库,比如STL或者MFC。它压缩1M数据少于100ms(P3处理器,主频1G)。
压缩
压缩代码非常简单,首先用ASCII值初始化511个哈夫曼节点:
CHuffmanNode nodes[511];
for(int nCount = 0; nCount < 256; nCount++)
nodes[nCount].byAscii = nCount;
然后,计算在输入缓冲区数据中,每个ASCII码出现的频率:
for(nCount = 0; nCount < nSrcLen; nCount++)
nodes[pSrc[nCount]].nFrequency++;
然后,根据频率进行排序:
qsort(nodes, 256, sizeof(CHuffmanNode), frequencyCompare);
现在,构造哈夫曼树,获取每个ASCII码对应的位序列:
int nNodeCount = GetHuffmanTree(nodes);
构造哈夫曼树非常简单,将所有的节点放到一个队列中,用一个节点替换两个频率最低的节点,新节点的频率就是这两个节点的频率之和。这样,新节点就是两个被替换节点的父节点了。如此循环,直到队列中只剩一个节点(树根)。
// parent node
pNode = &nodes[nParentNode++];
// pop first child
pNode->pLeft = PopNode(pNodes, nBackNode--, false);
// pop second child
pNode->pRight = PopNode(pNodes, nBackNode--, true);
// adjust parent of the two poped nodes
pNode->pLeft->pParent = pNode->pRight->pParent = pNode;
// adjust parent frequency
pNode->nFrequency = pNode->pLeft->nFrequency + pNode->pRight->nFrequency;
这里我用了一个好的诀窍来避免使用任何队列组件。我先前就直到ASCII码只有256个,但我 分配了511个(CHuffmanNode nodes[511]),前255个记录ASCII码,而用后255个记录哈夫曼树中的父节点。并且在构造树的时候只使用一个指针数组 (ChuffmanNode *pNodes[256])来指向这些节点。同样使用两个变量来操作队列索引(int nParentNode = nNodeCount;nBackNode = nNodeCount –1)。
接着,压缩的最后一步是将每个ASCII编码写入输出缓冲区中:
int nDesIndex = 0;
// loop to write codes
for(nCount = 0; nCount < nSrcLen; nCount++)
{
*(DWORD*)(pDesPtr+(nDesIndex>>3)) |=
nodes[pSrc[nCount]].dwCode << (nDesIndex&7);
nDesIndex += nodes[pSrc[nCount]].nCodeLength;
}
(nDesIndex>>3): >>3 以8位为界限右移后到达右边字节的前面
(nDesIndex&7): &7 得到最高位.
注意:在压缩缓冲区中,我们必须保存哈夫曼树的节点以及位序列,这样我们才能在解压缩时重新构造哈夫曼树(只需保存ASCII值和对应的位序列)。
解压缩
解压缩比构造哈夫曼树要简单的多,将输入缓冲区中的每个编码用对应的ASCII码逐个替换就可以了。只要记住,这里的输入缓冲区是一个包含每个ASCII值的编码的位流。因此,为了用ASCII值替换编码,我们必须用位流搜索哈夫曼树,直到发现一个叶节点,然后将它的ASCII值添加到输出缓冲区中:
int nDesIndex = 0;
DWORD nCode;
while(nDesIndex < nDesLen)
{
nCode = (*(DWORD*)(pSrc+(nSrcIndex>>3)))>>(nSrcIndex&7);
pNode = pRoot;
while(pNode->pLeft)
{
pNode = (nCode&1) ? pNode->pRight : pNode->pLeft;
nCode >>= 1;
nSrcIndex++;
}
pDes[nDesIndex++] = pNode->byAscii;
}
过程
#include <stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
#include<math.h>
#define M 10
typedef struct Fano_Node
{
char ch;
float weight;
}FanoNode[M];
typedef struct node
{
int start;
int end;
struct node *next;
}LinkQueueNode;
typedef struct
{
LinkQueueNode *front;
LinkQueueNode *rear;
}LinkQueue;
void EnterQueue(LinkQueue *q,int s,int e)
{
LinkQueueNode *NewNode;
NewNode=(LinkQueueNode *)malloc(sizeof(LinkQueueNode));
if(NewNode!=NULL)
{
NewNode->start=s;
NewNode->end=e;
NewNode->next=NULL;
q->rear->next=NewNode;
q->rear=NewNode;
}
else printf("Error!");
}
//***按权分组***//
void Divide(FanoNode f,int s,int *m,int e)
{
int i;
float sum,sum1;
sum=0;
for(i=s;i<=e;i++)
sum+=f.weight;
*m=s;
sum1=0;
for(i=s;i<e;i++)
{
sum1+=f.weight;
*m=fabs(sum-2*sum1)>fabs(sum-2*sum1-2*f.weight)?(i+1):*m;
if(*m==i)
break;
}
}
main()
{
int i,j,n,max,m,h[M];
int sta,mid,end;
float w;
char c,fc[M][M];
FanoNode FN;
LinkQueueNode *p;
LinkQueue *Q;
//***初始化队Q***//
Q->front=(LinkQueueNode *)malloc(sizeof(LinkQueueNode));
Q->rear=Q->front;
Q->front->next=NULL;
printf("\t***FanoCoding***\n");
printf("Please input the number of node:"); /*输入信息*/
scanf("%d",&n);
i=1;
while(i<=n)
{
printf("%d weight and node:",i);
scanf("%f %c",&FN.weight,&FN.ch);
for(j=1;j<i;j++)
{
if(FN.ch==FN[j].ch)
{
printf("Same node!!!\n");
break;
}
}
if(i==j)
i++;
}
for(i=1;i<=n;i++) /*排序*/
{
max=i+1;
for(j=max;j<=n;j++)
max=FN[max].weight<FN[j].weight?j:max;
if(FN.weight<FN[max].weight)
{
w=FN.weight;
FN.weight=FN[max].weight;
FN[max].weight=w;
c=FN.ch;
FN.ch=FN[max].ch;
FN[max].ch=c;
}
}
for(i=1;i<=n;i++) /*初始化h*/
h=0;
EnterQueue(Q,1,n); /*1和n进队*/
while(Q->front->next!=NULL)
{
p=Q->front->next; /*出队*/
Q->front->next=p->next;
if(p==Q->rear)
Q->rear=Q->front;
sta=p->start;
end=p->end;
free(p);
Divide(FN,sta,&m,end); /*按权分组*/
for(i=sta;i<=m;i++)
{
fc[h]='0';
h++;
}
if(sta!=m)
EnterQueue(Q,sta,m);
else
fc[sta][h[sta]]='\0';
for(i=m+1;i<=end;i++)
{
fc[h]='1';
h++;
}
if(m==sta&&(m+1)==end) //如果分组后首元素的下标与中间元素的相等,
{ //并且和最后元素的下标相差为1,则编码码字字符串结束
fc[m][h[m]]='\0';
fc[end][h[end]]='\0';
}
else
EnterQueue(Q,m+1,end);
}
for(i=1;i<=n;i++) /*打印编码信息*/
{
printf("%c:",FN.ch);
printf("%s\n",fc);
}
system("pause");
}
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define N 100
#define M 2*N-1
typedef char * HuffmanCode[2*M];
typedef struct
{
char weight;
int parent;
int LChild;
int RChild;
}HTNode,Huffman[M+1];
typedef struct Node
{
int weight; /*叶子结点的权值*/
char c; /*叶子结点*/
int num; /*叶子结点的二进制码的长度*/
}WNode,WeightNode[N];
/***产生叶子结点的字符和权值***/
void CreateWeight(char ch[],int *s,WeightNode *CW,int *p)
{
int i,j,k;
int tag;
*p=0;
for(i=0;ch!='\0';i++)
{
tag=1;
for(j=0;j<i;j++)
if(ch[j]==ch)
{
tag=0;
break;
}
if(tag)
{
(*CW)[++*p].c=ch;
(*CW)[*p].weight=1;
for(k=i+1;ch[k]!='\0';k++)
if(ch==ch[k])
(*CW)[*p].weight++;
}
}
*s=i;
}
/********创建HuffmanTree********/
void CreateHuffmanTree(Huffman *ht,WeightNode w,int n)
{
int i,j;
int s1,s2;
for(i=1;i<=n;i++)
{
(*ht).weight =w.weight;
(*ht).parent=0;
(*ht).LChild=0;
(*ht).RChild=0;
}
for(i=n+1;i<=2*n-1;i++)
{
(*ht).weight=0;
(*ht).parent=0;
(*ht).LChild=0;
(*ht).parent=0;
}
for(i=n+1;i<=2*n-1;i++)
{
for(j=1;j<=i-1;j++)
if(!(*ht)[j].parent)
break;
s1=j; /*找到第一个双亲不为零的结点*/
for(;j<=i-1;j++)
if(!(*ht)[j].parent)
s1=(*ht)[s1].weight>(*ht)[j].weight?j:s1;
(*ht)[s1].parent=i;
(*ht).LChild=s1;
for(j=1;j<=i-1;j++)
if(!(*ht)[j].parent)
break;
s2=j; /*找到第一个双亲不为零的结点*/
for(;j<=i-1;j++)
if(!(*ht)[j].parent)
s2=(*ht)[s2].weight>(*ht)[j].weight?j:s2;
(*ht)[s2].parent=i;
(*ht).RChild=s2;
(*ht).weight=(*ht)[s1].weight+(*ht)[s2].weight;
}
}
/***********叶子结点的编码***********/
void CrtHuffmanNodeCode(Huffman ht,char ch[],HuffmanCode *h,WeightNode *weight,int m,int n)
{
int i,j,k,c,p,start;
char *cd;
cd=(char *)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)
{
start=n-1;
c=i;
p=ht.parent;
while(p)
{
start--;
if(ht[p].LChild==c)
cd[start]='0';
else
cd[start]='1';
c=p;
p=ht[p].parent;
}
(*weight).num=n-start;
(*h)=(char *)malloc((n-start)*sizeof(char));
p=-1;
strcpy((*h),&cd[start]);
}
system("pause");
}
/*********所有字符的编码*********/
void CrtHuffmanCode(char ch[],HuffmanCode h,HuffmanCode *hc,WeightNode weight,int n,int m)
{
int i,j,k;
for(i=0;i<m;i++)
{
for(k=1;k<=n;k++) /*从(*weight)[k].c中查找与ch相等的下标K*/
if(ch==weight[k].c)
break;
(*hc)=(char *)malloc((weight[k].num+1)*sizeof(char));
for(j=0;j<=weight[k].num;j++)
(*hc)[j]=h[k][j];
}
}
/*****解码*****/
void TrsHuffmanTree(Huffman ht,WeightNode w,HuffmanCode hc,int n,int m)
{
int i=0,j,p;
printf("***StringInformation***\n");
while(i<m)
{
p=2*n-1;
for(j=0;hc[j]!='\0';j++)
{
if(hc[j]=='0')
p=ht[p].LChild;
else
p=ht[p].RChild;
}
printf("%c",w[p].c); /*打印原信息*/
i++;
}
}
main()
{
int i,n,m,s1,s2,j; /*n为叶子结点的个数*/
char ch[N],w[N]; /*ch[N]存放输入的字符串*/
Huffman ht; /*二叉数 */
HuffmanCode h,hc; /* h存放叶子结点的编码,hc 存放所有结点的编码*/
WeightNode weight; /*存放叶子结点的信息*/
printf("\t***HuffmanCoding***\n");
printf("please input information :");
gets(ch); /*输入字符串*/
CreateWeight(ch,&m,&weight,&n); /*产生叶子结点信息,m为字符串ch[]的长度*/
printf("***WeightInformation***\n Node "); /*输出叶子结点的字符与权值*/
for(i=1;i<=n;i++)
printf("%c ",weight.c);
printf("\nWeight ");
for(i=1;i<=n;i++)
printf("%d ",weight.weight);
CreateHuffmanTree(&ht,weight,n); /*产生Huffman树*/
printf("\n***HuffamnTreeInformation***\n");
for(i=1;i<=2*n-1;i++) /*打印Huffman树的信息*/
printf("\t%d %d %d %d\n",i,ht.weight,ht.parent,ht.LChild,ht.RChild);
CrtHuffmanNodeCode(ht,ch,&h,&weight,m,n); /*叶子结点的编码*/
printf(" ***NodeCode***\n"); /*打印叶子结点的编码*/
for(i=1;i<=n;i++)
{
printf("\t%c:",weight.c);
printf("%s\n",h);
}
CrtHuffmanCode(ch,h,&hc,weight,n,m); /*所有字符的编码*/
printf("***StringCode***\n"); /*打印字符串的编码*/
for(i=0;i<m;i++)
printf("%s",hc);
system("pause");
TrsHuffmanTree(ht,weight,hc,n,m); /*解码*/
system("pause");
}
Matlab 中简易实现Huffman编译码:
n=input('Please input the total number: ');
hf=zeros(2*n-1,5);
hq=[];
for ki=1:n
hf(ki,1)=ki;
hf(ki,2)=input('Please input the frequency: ');
hq=[hq,hf(ki,2)];
end
for ki=n+1:2*n-1
hf(ki,1)=ki;
mhq1=min(hq);
m=size(hq);
m=m(:,2);
k=1;
while k<=m%del min1
if hq(:,k)==mhq1
hq=[hq(:,1:(k-1)) hq(:,(k+1):m)];
m=m-1;
break
else
k=k+1;
end
end
k=1;
while hf(k,2)~=mhq1|hf(k,5)==1%find min1 location
k=k+1;
end
hf(k,5)=1;
k1=k;
mhq2=min(hq);
k=1;
while k<=m%del min2
if hq(:,k)==mhq2
hq=[hq(:,1:(k-1)) hq(:,(k+1):m)];
m=m-1;
break
else
k=k+1;
end
end
k=1;
while hf(k,2)~=mhq2|hf(k,5)==1%find min2 location
k=k+1;
end
hf(k,5)=1;
k2=k;
hf(ki,2)=mhq1+mhq2;
hf(ki,3)=k1;
hf(ki,4)=k2;
hq=[hq hf(ki,2)];
end
clc
choose=input('Please choose what you want:\n1: Encoding\n2: Decoding\n3:.Exit\n');
while choose==1|choose==2
if choose==1
a=input('Please input the letter you want to Encoding: ');
k=1;
while hf(k,2)~=a
k=k+1;
if k>=n
display('Error! You did not input this number.');
break
end
end
if k>=n
break
end
r=[];
while hf(k,5)==1
kc=n+1;
while hf(kc,3)~=k&hf(kc,4)~=k
kc=kc+1;
end
if hf(kc,3)==k
r=[0 r];
else
r=[1 r];
end
k=kc;
end
r
else
a=input('Please input the metrix you want to Decoding: ');
sa=size(a);
sa=sa(:,2);
k=2*n-1;
while sa~=0
if a(:,1)==0
k=hf(k,3);
else
k=hf(k,4);
end
a=a(:,2:sa);
sa=sa-1;
if k==0
display('Error! The metrix you entered is a wrong one.');
break
end
end
if k==0
break
end
r=hf(k,2);
r
end
choose=input('Please choose what you want:\n1: Encoding\n2: Decoding\n3:.Exit\n');
clc
end
if choose~=1&choose~=2
clc;
end
因此,大家都会发现,理解甚至修改这个编码都是很容易的。
背景
哈夫曼压缩是个无损的压缩算法,一般用来压缩文本和程序文件。哈夫曼压缩属于可变代码长度算法一族。意思是个体符号(例如,文本文件中的字符)用一个特定长度的位序列替代。因此,在文件中出现频率高的符号,使用短的位序列,而那些很少出现的符号,则用较长的位序列。
编码使用
我用简单的C函数写这个编码是为了让它在任何地方使用都会比较方便。你可以将他们放到类中,或者直接使用这个函数。并且我使用了简单的格式,仅仅输入输出缓冲区,而不象其它文章中那样,输入输出文件。
bool CompressHuffman(BYTE *pSrc, int nSrcLen, BYTE *&pDes, int &nDesLen);
bool DecompressHuffman(BYTE *pSrc, int nSrcLen, BYTE *&pDes, int &nDesLen);
要点说明
速度
为了让它(huffman.cpp)快速运行,我花了很长时间。同时,我没有使用任何动态库,比如STL或者MFC。它压缩1M数据少于100ms(P3处理器,主频1G)。
压缩
压缩代码非常简单,首先用ASCII值初始化511个哈夫曼节点:
CHuffmanNode nodes[511];
for(int nCount = 0; nCount < 256; nCount++)
nodes[nCount].byAscii = nCount;
然后,计算在输入缓冲区数据中,每个ASCII码出现的频率:
for(nCount = 0; nCount < nSrcLen; nCount++)
nodes[pSrc[nCount]].nFrequency++;
然后,根据频率进行排序:
qsort(nodes, 256, sizeof(CHuffmanNode), frequencyCompare);
现在,构造哈夫曼树,获取每个ASCII码对应的位序列:
int nNodeCount = GetHuffmanTree(nodes);
构造哈夫曼树非常简单,将所有的节点放到一个队列中,用一个节点替换两个频率最低的节点,新节点的频率就是这两个节点的频率之和。这样,新节点就是两个被替换节点的父节点了。如此循环,直到队列中只剩一个节点(树根)。
// parent node
pNode = &nodes[nParentNode++];
// pop first child
pNode->pLeft = PopNode(pNodes, nBackNode--, false);
// pop second child
pNode->pRight = PopNode(pNodes, nBackNode--, true);
// adjust parent of the two poped nodes
pNode->pLeft->pParent = pNode->pRight->pParent = pNode;
// adjust parent frequency
pNode->nFrequency = pNode->pLeft->nFrequency + pNode->pRight->nFrequency;
这里我用了一个好的诀窍来避免使用任何队列组件。我先前就直到ASCII码只有256个,但我 分配了511个(CHuffmanNode nodes[511]),前255个记录ASCII码,而用后255个记录哈夫曼树中的父节点。并且在构造树的时候只使用一个指针数组 (ChuffmanNode *pNodes[256])来指向这些节点。同样使用两个变量来操作队列索引(int nParentNode = nNodeCount;nBackNode = nNodeCount –1)。
接着,压缩的最后一步是将每个ASCII编码写入输出缓冲区中:
int nDesIndex = 0;
// loop to write codes
for(nCount = 0; nCount < nSrcLen; nCount++)
{
*(DWORD*)(pDesPtr+(nDesIndex>>3)) |=
nodes[pSrc[nCount]].dwCode << (nDesIndex&7);
nDesIndex += nodes[pSrc[nCount]].nCodeLength;
}
(nDesIndex>>3): >>3 以8位为界限右移后到达右边字节的前面
(nDesIndex&7): &7 得到最高位.
注意:在压缩缓冲区中,我们必须保存哈夫曼树的节点以及位序列,这样我们才能在解压缩时重新构造哈夫曼树(只需保存ASCII值和对应的位序列)。
解压缩
解压缩比构造哈夫曼树要简单的多,将输入缓冲区中的每个编码用对应的ASCII码逐个替换就可以了。只要记住,这里的输入缓冲区是一个包含每个ASCII值的编码的位流。因此,为了用ASCII值替换编码,我们必须用位流搜索哈夫曼树,直到发现一个叶节点,然后将它的ASCII值添加到输出缓冲区中:
int nDesIndex = 0;
DWORD nCode;
while(nDesIndex < nDesLen)
{
nCode = (*(DWORD*)(pSrc+(nSrcIndex>>3)))>>(nSrcIndex&7);
pNode = pRoot;
while(pNode->pLeft)
{
pNode = (nCode&1) ? pNode->pRight : pNode->pLeft;
nCode >>= 1;
nSrcIndex++;
}
pDes[nDesIndex++] = pNode->byAscii;
}
过程
#include <stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
#include<math.h>
#define M 10
typedef struct Fano_Node
{
char ch;
float weight;
}FanoNode[M];
typedef struct node
{
int start;
int end;
struct node *next;
}LinkQueueNode;
typedef struct
{
LinkQueueNode *front;
LinkQueueNode *rear;
}LinkQueue;
void EnterQueue(LinkQueue *q,int s,int e)
{
LinkQueueNode *NewNode;
NewNode=(LinkQueueNode *)malloc(sizeof(LinkQueueNode));
if(NewNode!=NULL)
{
NewNode->start=s;
NewNode->end=e;
NewNode->next=NULL;
q->rear->next=NewNode;
q->rear=NewNode;
}
else printf("Error!");
}
//***按权分组***//
void Divide(FanoNode f,int s,int *m,int e)
{
int i;
float sum,sum1;
sum=0;
for(i=s;i<=e;i++)
sum+=f.weight;
*m=s;
sum1=0;
for(i=s;i<e;i++)
{
sum1+=f.weight;
*m=fabs(sum-2*sum1)>fabs(sum-2*sum1-2*f.weight)?(i+1):*m;
if(*m==i)
break;
}
}
main()
{
int i,j,n,max,m,h[M];
int sta,mid,end;
float w;
char c,fc[M][M];
FanoNode FN;
LinkQueueNode *p;
LinkQueue *Q;
//***初始化队Q***//
Q->front=(LinkQueueNode *)malloc(sizeof(LinkQueueNode));
Q->rear=Q->front;
Q->front->next=NULL;
printf("\t***FanoCoding***\n");
printf("Please input the number of node:"); /*输入信息*/
scanf("%d",&n);
i=1;
while(i<=n)
{
printf("%d weight and node:",i);
scanf("%f %c",&FN.weight,&FN.ch);
for(j=1;j<i;j++)
{
if(FN.ch==FN[j].ch)
{
printf("Same node!!!\n");
break;
}
}
if(i==j)
i++;
}
for(i=1;i<=n;i++) /*排序*/
{
max=i+1;
for(j=max;j<=n;j++)
max=FN[max].weight<FN[j].weight?j:max;
if(FN.weight<FN[max].weight)
{
w=FN.weight;
FN.weight=FN[max].weight;
FN[max].weight=w;
c=FN.ch;
FN.ch=FN[max].ch;
FN[max].ch=c;
}
}
for(i=1;i<=n;i++) /*初始化h*/
h=0;
EnterQueue(Q,1,n); /*1和n进队*/
while(Q->front->next!=NULL)
{
p=Q->front->next; /*出队*/
Q->front->next=p->next;
if(p==Q->rear)
Q->rear=Q->front;
sta=p->start;
end=p->end;
free(p);
Divide(FN,sta,&m,end); /*按权分组*/
for(i=sta;i<=m;i++)
{
fc[h]='0';
h++;
}
if(sta!=m)
EnterQueue(Q,sta,m);
else
fc[sta][h[sta]]='\0';
for(i=m+1;i<=end;i++)
{
fc[h]='1';
h++;
}
if(m==sta&&(m+1)==end) //如果分组后首元素的下标与中间元素的相等,
{ //并且和最后元素的下标相差为1,则编码码字字符串结束
fc[m][h[m]]='\0';
fc[end][h[end]]='\0';
}
else
EnterQueue(Q,m+1,end);
}
for(i=1;i<=n;i++) /*打印编码信息*/
{
printf("%c:",FN.ch);
printf("%s\n",fc);
}
system("pause");
}
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define N 100
#define M 2*N-1
typedef char * HuffmanCode[2*M];
typedef struct
{
char weight;
int parent;
int LChild;
int RChild;
}HTNode,Huffman[M+1];
typedef struct Node
{
int weight; /*叶子结点的权值*/
char c; /*叶子结点*/
int num; /*叶子结点的二进制码的长度*/
}WNode,WeightNode[N];
/***产生叶子结点的字符和权值***/
void CreateWeight(char ch[],int *s,WeightNode *CW,int *p)
{
int i,j,k;
int tag;
*p=0;
for(i=0;ch!='\0';i++)
{
tag=1;
for(j=0;j<i;j++)
if(ch[j]==ch)
{
tag=0;
break;
}
if(tag)
{
(*CW)[++*p].c=ch;
(*CW)[*p].weight=1;
for(k=i+1;ch[k]!='\0';k++)
if(ch==ch[k])
(*CW)[*p].weight++;
}
}
*s=i;
}
/********创建HuffmanTree********/
void CreateHuffmanTree(Huffman *ht,WeightNode w,int n)
{
int i,j;
int s1,s2;
for(i=1;i<=n;i++)
{
(*ht).weight =w.weight;
(*ht).parent=0;
(*ht).LChild=0;
(*ht).RChild=0;
}
for(i=n+1;i<=2*n-1;i++)
{
(*ht).weight=0;
(*ht).parent=0;
(*ht).LChild=0;
(*ht).parent=0;
}
for(i=n+1;i<=2*n-1;i++)
{
for(j=1;j<=i-1;j++)
if(!(*ht)[j].parent)
break;
s1=j; /*找到第一个双亲不为零的结点*/
for(;j<=i-1;j++)
if(!(*ht)[j].parent)
s1=(*ht)[s1].weight>(*ht)[j].weight?j:s1;
(*ht)[s1].parent=i;
(*ht).LChild=s1;
for(j=1;j<=i-1;j++)
if(!(*ht)[j].parent)
break;
s2=j; /*找到第一个双亲不为零的结点*/
for(;j<=i-1;j++)
if(!(*ht)[j].parent)
s2=(*ht)[s2].weight>(*ht)[j].weight?j:s2;
(*ht)[s2].parent=i;
(*ht).RChild=s2;
(*ht).weight=(*ht)[s1].weight+(*ht)[s2].weight;
}
}
/***********叶子结点的编码***********/
void CrtHuffmanNodeCode(Huffman ht,char ch[],HuffmanCode *h,WeightNode *weight,int m,int n)
{
int i,j,k,c,p,start;
char *cd;
cd=(char *)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)
{
start=n-1;
c=i;
p=ht.parent;
while(p)
{
start--;
if(ht[p].LChild==c)
cd[start]='0';
else
cd[start]='1';
c=p;
p=ht[p].parent;
}
(*weight).num=n-start;
(*h)=(char *)malloc((n-start)*sizeof(char));
p=-1;
strcpy((*h),&cd[start]);
}
system("pause");
}
/*********所有字符的编码*********/
void CrtHuffmanCode(char ch[],HuffmanCode h,HuffmanCode *hc,WeightNode weight,int n,int m)
{
int i,j,k;
for(i=0;i<m;i++)
{
for(k=1;k<=n;k++) /*从(*weight)[k].c中查找与ch相等的下标K*/
if(ch==weight[k].c)
break;
(*hc)=(char *)malloc((weight[k].num+1)*sizeof(char));
for(j=0;j<=weight[k].num;j++)
(*hc)[j]=h[k][j];
}
}
/*****解码*****/
void TrsHuffmanTree(Huffman ht,WeightNode w,HuffmanCode hc,int n,int m)
{
int i=0,j,p;
printf("***StringInformation***\n");
while(i<m)
{
p=2*n-1;
for(j=0;hc[j]!='\0';j++)
{
if(hc[j]=='0')
p=ht[p].LChild;
else
p=ht[p].RChild;
}
printf("%c",w[p].c); /*打印原信息*/
i++;
}
}
main()
{
int i,n,m,s1,s2,j; /*n为叶子结点的个数*/
char ch[N],w[N]; /*ch[N]存放输入的字符串*/
Huffman ht; /*二叉数 */
HuffmanCode h,hc; /* h存放叶子结点的编码,hc 存放所有结点的编码*/
WeightNode weight; /*存放叶子结点的信息*/
printf("\t***HuffmanCoding***\n");
printf("please input information :");
gets(ch); /*输入字符串*/
CreateWeight(ch,&m,&weight,&n); /*产生叶子结点信息,m为字符串ch[]的长度*/
printf("***WeightInformation***\n Node "); /*输出叶子结点的字符与权值*/
for(i=1;i<=n;i++)
printf("%c ",weight.c);
printf("\nWeight ");
for(i=1;i<=n;i++)
printf("%d ",weight.weight);
CreateHuffmanTree(&ht,weight,n); /*产生Huffman树*/
printf("\n***HuffamnTreeInformation***\n");
for(i=1;i<=2*n-1;i++) /*打印Huffman树的信息*/
printf("\t%d %d %d %d\n",i,ht.weight,ht.parent,ht.LChild,ht.RChild);
CrtHuffmanNodeCode(ht,ch,&h,&weight,m,n); /*叶子结点的编码*/
printf(" ***NodeCode***\n"); /*打印叶子结点的编码*/
for(i=1;i<=n;i++)
{
printf("\t%c:",weight.c);
printf("%s\n",h);
}
CrtHuffmanCode(ch,h,&hc,weight,n,m); /*所有字符的编码*/
printf("***StringCode***\n"); /*打印字符串的编码*/
for(i=0;i<m;i++)
printf("%s",hc);
system("pause");
TrsHuffmanTree(ht,weight,hc,n,m); /*解码*/
system("pause");
}
Matlab 中简易实现Huffman编译码:
n=input('Please input the total number: ');
hf=zeros(2*n-1,5);
hq=[];
for ki=1:n
hf(ki,1)=ki;
hf(ki,2)=input('Please input the frequency: ');
hq=[hq,hf(ki,2)];
end
for ki=n+1:2*n-1
hf(ki,1)=ki;
mhq1=min(hq);
m=size(hq);
m=m(:,2);
k=1;
while k<=m%del min1
if hq(:,k)==mhq1
hq=[hq(:,1:(k-1)) hq(:,(k+1):m)];
m=m-1;
break
else
k=k+1;
end
end
k=1;
while hf(k,2)~=mhq1|hf(k,5)==1%find min1 location
k=k+1;
end
hf(k,5)=1;
k1=k;
mhq2=min(hq);
k=1;
while k<=m%del min2
if hq(:,k)==mhq2
hq=[hq(:,1:(k-1)) hq(:,(k+1):m)];
m=m-1;
break
else
k=k+1;
end
end
k=1;
while hf(k,2)~=mhq2|hf(k,5)==1%find min2 location
k=k+1;
end
hf(k,5)=1;
k2=k;
hf(ki,2)=mhq1+mhq2;
hf(ki,3)=k1;
hf(ki,4)=k2;
hq=[hq hf(ki,2)];
end
clc
choose=input('Please choose what you want:\n1: Encoding\n2: Decoding\n3:.Exit\n');
while choose==1|choose==2
if choose==1
a=input('Please input the letter you want to Encoding: ');
k=1;
while hf(k,2)~=a
k=k+1;
if k>=n
display('Error! You did not input this number.');
break
end
end
if k>=n
break
end
r=[];
while hf(k,5)==1
kc=n+1;
while hf(kc,3)~=k&hf(kc,4)~=k
kc=kc+1;
end
if hf(kc,3)==k
r=[0 r];
else
r=[1 r];
end
k=kc;
end
r
else
a=input('Please input the metrix you want to Decoding: ');
sa=size(a);
sa=sa(:,2);
k=2*n-1;
while sa~=0
if a(:,1)==0
k=hf(k,3);
else
k=hf(k,4);
end
a=a(:,2:sa);
sa=sa-1;
if k==0
display('Error! The metrix you entered is a wrong one.');
break
end
end
if k==0
break
end
r=hf(k,2);
r
end
choose=input('Please choose what you want:\n1: Encoding\n2: Decoding\n3:.Exit\n');
clc
end
if choose~=1&choose~=2
clc;
end
发表评论
-
内存屏障
2010-02-26 11:03 1508处理器的乱序和并发执行 目前的高级处理器,为了提高内部逻辑元 ... -
函数调用堆栈分析
2010-02-26 10:53 1383理解调用栈最重要的两 ... -
mtrace检测内存泄露
2010-02-25 09:50 1091[url] http://math.acadiau.ca/AC ... -
c语言编程之字符串操作
2010-02-25 09:41 8621. //在s串中查找与s1相匹配的字符串,找到后用 ... -
linux C 链接库 so制作及调用[转]
2010-02-24 16:26 2579文章分类:C++编程 [文章作者:陈毓端 若转载请标注原文链 ... -
mtrace的使用
2010-02-24 16:02 1312对于内存溢出之类的麻烦可能大家在编写指针比较多的复杂的程序的时 ... -
单片机的C语言中位操作用法(转
2010-02-24 14:27 2213单片机的C语言中位操作用法 作者:郭天祥 在对单处机进 ... -
Linux下的itoa函数
2010-02-21 17:55 1765上篇文章说到linux需要it ... -
va_list、va_start、va_arg、va_end的原理与使用
2010-02-05 10:34 29031. 概述 由于在C语言中没有函数重载,解 ... -
快速排序(quickSort)
2010-02-04 10:50 8671. #include <stdio.h> ... -
C问题---itoa函数
2010-02-04 10:36 1047------------------------------ ... -
itoa函数及atoi函数
2010-02-04 10:35 1313C语言提供了几个标准库函数,可以将任意类型(整型、长整型、浮点 ... -
结构体零长度数组的作用
2010-02-04 10:21 1375在一些 C 语言编写的代码中,有时可以看到如下定义的结构: ... -
优化C代码常用的几招
2010-02-04 10:14 775性能优化方面永远注意8 ... -
我经常去的网站
2010-02-03 17:53 1623MFC相关网站 www.codeproject.com ht ... -
可重入函数与不可重入函数
2010-02-03 16:35 931原文地址:http://blog.chin ... -
linux线程池及其测试
2010-02-03 16:32 2360/*----------------------------- ... -
优化变成了忧患:String.split引发的“内存泄露”
2010-02-01 17:39 1117一直赞叹Sun对待技术的 ... -
锁无关的(Lock-Free)数据结构——在避免死锁的同时确保线程
2010-01-26 14:47 906http://hi.baidu.com/%5F%E2%64%5 ... -
使用 GNU profiler 来提高代码运行速度
2010-01-26 13:46 783进应用程序的性能是一 ...
相关推荐
### 哈夫曼编码的贪心算法设计 #### 实验背景与意义 哈夫曼编码是一种广泛应用的数据压缩技术,特别是在文件压缩领域有着极其重要的作用。哈夫曼编码利用了贪心算法的思想来构建最优的前缀编码树,进而达到高效...
哈夫曼树与哈夫曼编码是数据结构和算法领域中的一个重要概念,广泛应用于数据压缩、文本编码以及优先队列等场景。哈夫曼编码是一种特殊的前缀编码方法,能够为字符提供一种高效的二进制表示,使得频繁出现的字符具有...
哈夫曼编码计算信源熵及编码效率 哈夫曼编码是一种变长前缀编码方法,它可以根据信源符号的概率分布计算信源熵和编码效率。本文将详细介绍哈夫曼编码的原理、步骤和实现方法。 哈夫曼编码的原理 哈夫曼编码的原理...
哈夫曼编码是一种高效的数据编码方法,主要用于无损数据压缩。它的原理是为每个字符分配一个唯一的二进制编码,使得频繁出现的字符拥有较短的编码,而不常出现的字符则有较长的编码,以此来减少平均编码长度,达到...
哈夫曼编码是一种高效的数据编码方法,主要用于无损数据压缩,尤其在文本和图像处理领域广泛应用。它基于字符出现频率构建最优的二叉树结构,使得频繁出现的字符占用更短的编码,从而提高压缩效率。这个“图像处理...
利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 从键盘输入若干字符及每个字符出现的频率,...
### 哈夫曼编码MATLAB程序解析 #### 前言 哈夫曼编码是一种广泛应用在数据压缩领域的编码方式,其核心思想是通过构建一棵特殊的二叉树(哈夫曼树)来实现对不同字符的高效编码。该编码方法在确保原始数据可被完全...
哈夫曼编码是一种高效的数据压缩方法,主要用于无损数据压缩,尤其在文本文件的压缩中效果显著。它基于字符出现频率构建最小带权路径长度(Minimum Weighted Path Length, MWPL)的二叉树,也被称为哈夫曼树。在这个...
哈夫曼编码是一种高效的数据压缩方法,由大卫·艾伦·哈夫曼在1952年提出。它是基于字符频率构建的一种前缀编码,能够为频繁出现的字符分配较短的编码,从而减少数据存储空间,提高传输效率。在C语言中实现哈夫曼...
### 哈夫曼编码原理及其实现 #### 前言 哈夫曼编码是一种广泛应用在数据压缩领域的编码方式,特别适用于无损压缩。它通过构建一个特殊的二叉树——哈夫曼树来实现最优前缀编码。本文将详细介绍哈夫曼编码的基本...
哈夫曼编码是一种高效的数据压缩方法,源自于数据结构中的二叉树理论,由David A. Huffman在1952年提出。它基于频率最小的编码原则,通过构建一棵特殊的二叉树(哈夫曼树)来为每个字符或符号生成唯一的前缀编码,...
哈夫曼编码是广泛用于数据文件压缩的十分有效的编码方式,其压缩率通常在20%—90%之间。哈夫曼编码算法是通过使用字符在文件中出现的频率表来构造最优前缀码的贪心算法。所谓前缀码,即是任一字符的编码都不是其他...
哈夫曼编码是一种高效的前缀编码方法,它根据数据出现频率分配最短的二进制码,频繁出现的字符拥有较短的编码,从而减少传输或存储的数据量。 实验报告中提到的实验目的是为了让学生熟练掌握树形结构,特别是哈夫曼...
哈夫曼编码是一种高效的数据压缩方法,常用于文本、图像等多种数据类型的压缩。在数据结构课程中,哈夫曼树(又称最优二叉树)是理解哈夫曼编码的关键。这个C语言实现的哈夫曼编码译码器是学习哈夫曼编码原理和实践...
"三元哈夫曼编码 哈夫曼树" 哈夫曼树是一种特殊的二叉树结构,它可以用于数据压缩、图像处理和网络通讯等领域。哈夫曼树的构造方法是根据给定的权值来构造一棵二叉树,使其带权路径长度 WPL 最小。哈夫曼树的优点是...
哈夫曼编码是一种基于二叉树的数据压缩方法,由美国计算机科学家戴维·哈夫曼在1952年提出。在本项目中,我们利用哈夫曼编码实现了对文本文件的加密和解密功能,具体操作是针对ASCII字符集内的字符进行。以下是关于...
哈夫曼编码是一种高效的数据编码方法,主要用于无损数据压缩,通过构建最优的二叉树结构(哈夫曼树)来实现对字符的编码。在本项目中,使用Java语言实现了一个哈夫曼编码和解码的可视化界面,使得用户能够直观地观察...
哈夫曼编码实验报告 数据结构大作业哈夫曼编码实验报告是一个关于哈夫曼编码的实验报告,讲述了哈夫曼编码的基本原理、构造过程和代码实现。哈夫曼编码是一种变长前缀编码,用于数据压缩和编码。下面是该实验报告的...
哈夫曼编码是一种高效的数据压缩方法,源自于数据结构中的二叉树理论,由David A. Huffman在1952年提出。它基于频率优先的原则,通过构建最优的二叉树(也称为哈夫曼树或最小带权路径长度树)来为字符或符号分配唯一...