- 浏览: 238764 次
- 性别:
- 来自: 南京
-
最新评论
-
baby8117628:
vc下mp3 IDv1和IDV2的读取 -
gezexu:
你好,我按照你的步骤一步步进行但是安装libvorbis的时候 ...
linux如何搭建强大的FFMPEG环境 -
ini_always:
帅哥,转载也把格式做好点,另外出处也要注明一下吧。。。
MP3文件格式解析
MP3文件格式解析
Peter Lee 2008-06-05
目录
一、概述...
二、整个MP3文件结构...
三、MP3帧格式...
1. 帧头格式...
2. MAIN_DATA..
四、ID3标准...
1. ID3V1.
2. ID3V2.
五、MP3文件实例剖析...
六、资料...
一、 概述
MP3 文件是由帧(frame)构成的,帧是 MP3 文件最小的组成单位。MP3 的全称应为 MPEG1 Layer-3 音频
文件,MPEG(Moving Picture Experts Group)在汉语中译为活动图像专家组,特指活动影音压缩标准,MPEG
音频文件是 MPEG1 标准中的声音部分,也叫 MPEG 音频层,它根据压缩质量和编码复杂程度划分为三层,即
Layer-1、Layer2、Layer3,且分别对应 MP1、MP2、MP3 这三种声音文件,并根据不同的用途,使用不同层
次的编码。MPEG 音频编码的层次越高,编码器越复杂,压缩率也越高,MP1 和 MP2 的压缩率分别为 4:1 和
6:1-8:1,而 MP3 的压缩率则高达 10:1-12:1,也就是说,一分钟 CD 音质的音乐,未经压缩需要 10MB
的存储空间,而经过 MP3 压缩编码后只有 1MB 左右。不过 MP3 对音频信号采用的是有损压缩方式,为了降
低声音失真度,MP3 采取了“感官编码技术”,即编码时先对音频文件进行频谱分析,然后用过滤器滤掉
噪音电平,接着通过量化的方式将剩下的每一位打散排列,最后形成具有较高压缩比的 MP3 文件,并使压
缩后的文件在回放时能够达到比较接近原音源的声音效果。
二、整个MP3文件结构
MP3文件大体分为三部分:TAG_V2(ID3V2),Frame, TAG_V1(ID3V1)
ID3V2
包含了作者,作曲,专辑等信息,长度不固定,扩展了ID3V1的信息量。
Frame
.
.
.
Frame
一系列的帧,个数由文件大小和帧长决定
每个FRAME的长度可能不固定,也可能固定,由位率bitrate决定
每个FRAME又分为帧头和数据实体两部分
帧头记录了mp3的位率,采样率,版本等信息,每个帧之间相互独立
ID3V1
包含了作者,作曲,专辑等信息,长度为128BYTE。
三、MP3帧格式
1. 帧头格式
帧头长4字节,对于固定位率的MP3文件,所有帧的帧头格式一样其数据结构如下:
typedef FrameHeader {
unsigned int sync: 11; //同步信息
unsigned int version: 2; //版本
unsigned int layer: 2; //层
unsigned int error protection: 1; // CRC校验
unsigned int bitrate_index: 4; //位率
unsigned int sampling_frequency: 2; //采样频率
unsigned int padding: 1; //帧长调节
unsigned int private: 1; //保留字
unsigned int mode: 2; //声道模式
unsigned int mode extension: 2; //扩充模式
unsigned int copyright: 1; // 版权
unsigned int original: 1; //原版标志
unsigned int emphasis: 2; //强调模式
}HEADER, *LPHEADER;
帧头4字节使用说明见表1。
MP3帧长取决于位率和频率,计算公式为:
. mpeg1.0 layer1 : 帧长= (48000*bitrate)/sampling_freq + padding
layer2&3: 帧长= (144000*bitrate)/sampling_freq + padding
. mpeg2.0 layer1 : 帧长= (24000*bitrate)/sampling_freq + padding
layer2&3 : 帧长= (72000*bitrate)/sampling_freq + padding
例如:位率为64kbps,采样频率为44.1kHz,padding(帧长调节)为1时,帧长为210字节。
帧头后面是可变长度的附加信息,对于标准的MP3文件来说,其长度是32字节,紧接其后的是压缩的声音数据,当解码器读到此处时就进行解码了。
表1 MP3帧头字节使用说明
名称
位长
说 明
同步信息
11
第1、2字节
所有位均为1,第1字节恒为FF。
版本
2
00-MPEG 2.5 01-未定义 10-MPEG 2 11-MPEG 1
层
2
00-未定义 01-Layer 3 10-Layer 2 11-Layer 1
CRC校验
1
0-校验 1-不校验
位率
4
第3字节
取样率,单位是kbps,例如采用MPEG-1 Layer 3,64kbps是,值为0101。
bits
V1,L1
V1,L2
V1,L3
V2,L1
V2,L2
V2,L3
0000
free
free
free
free
free
free
0001
32
32
32
32(32)
32(8)
8 (8)
0010
64
48
40
64(48)
48(16)
16 (16)
0011
96
56
48
96(56)
56(24)
24 (24)
0100
128
64
56
128(64)
64(32)
32 (32)
0101
160
80
64
160(80)
80(40)
64 (40)
0110
192
96
80
192(96)
96(48)
80 (48)
0111
224
112
96
224(112)
112(56)
56 (56)
1000
256
128
112
256(128)
128(64)
64 (64)
1001
288
160
128
288(144)
160(80)
128 (80)
1010
320
192
160
320(160)
192(96)
160 (96)
1011
352
224
192
352(176)
224(112)
112 (112)
1100
384
256
224
384(192)
256(128)
128 (128)
1101
416
320
256
416(224)
320(144)
256 (144)
1110
448
384
320
448(256)
384(160)
320 (160)
1111
bad
bad
bad
bad
bad
bad
V1 - MPEG 1 V2 - MPEG 2 and MPEG 2.5
L1 - Layer 1 L2 - Layer 2 L3 - Layer 3
"free" 表示位率可变 "bad" 表示不允许值
采样频率
2
采样频率,对于MPEG-1: 00-44.1kHz 01-48kHz 10-32kHz 11-未定义
对于MPEG-2: 00-22.05kHz 01-24kHz 10-16kHz 11-未定义
对于MPEG-2.5: 00-11.025kHz 01-12kHz 10-8kHz 11-未定义
帧长调节
1
用来调整文件头长度,0-无需调整,1-调整,具体调整计算方法见下文。
保留字
1
没有使用。
声道模式
2
第4字节
表示声道, 00-立体声Stereo 01-Joint Stereo 10-双声道 11-单声道
扩充模式
2
当声道模式为01是才使用。
Value
强度立体声
MS立体声
00
off
off
01
on
off
10
off
on
11
on
on
版权
1
文件是否合法,0-不合法 1-合法
原版标志
1
是否原版, 0-非原版 1-原版
强调方式
2
用于声音经降噪压缩后再补偿的分类,很少用到,今后也可能不会用。
00-未定义 01-50/15ms 10-保留 11-CCITT J.17
2. MAIN_DATA
MAIN_DATA 部分长度是否变化决定于 FRAMEHEADER 的 bitrate 是否变化,一首 MP3 歌曲,它有三个版
本:96Kbps(96 千比特位每秒)、128Kbps 和 192Kbps。Kbps(比特位速率),表明了音乐每秒的数据量,
Kbps 值越高,音质越好,文件也越大,MP3 标准规定,不变的 bitrate 的 MP3 文件称作 CBR,大多数 MP3
文件都是 CBR 的,而变化的 bitrate 的 MP3 文件称作 VBR,每个 FRAME 的长度都可能是变化的。下面是 CBR
和 VBR 的不同点:
1)CBR:固定位率的 FRAME 的大小是固定的(公式如上所述),只要知道文件总长度,和帧长即可由播放每帧需 26ms 计算得出 mp3 播放的总时间,也可通过计数帧的个数控制快进、快退慢放等操作。注:有些时候,并不是所有的帧都是等长的,有的帧可能多一个或几个字节。
2)VBR:VBR 是 XING 公司推出的算法,所以在 MP3 的 FRAME 里会有“XING"这个关键字(现在很多流行的
小软件也可以进行 VBR 压缩,它们是否遵守这个约定,那就不得而知了),它存放在 MP3 文件中的第一个有效 FRAME 里,它标识了这个 MP3 文件是 VBR 的。同时第一个 FRAME 里存放了 MP3 文件的 FRAME 的总个数,这就很容易获得了播放总时间,同时还有 100 个字节存放了播放总时间的 100 个时间分段的 FRAME 的 INDEX,假设 4 分钟的 MP3 歌曲,240S,分成 100 段,每两个相邻 INDEX 的时间差就是 2.4S,所以通过这个 INDEX,只要前后处理少数的 FRAME,就能快速找出我们需要快进的 FRAME 头。
表2 VBR文件第一帧结构
字节
说 明
1-4
与CBR相同的标准声音帧头
5-40
存放VBR文件标识“Xing”(58 69 6E 67),此标识具体位置视采用的MPEG标准和声道模式而定。标识的前后字节没有使用。
36-39
MPEG-1和非单声道(常见)
21-24
MPEG-1和单声道
21-24
MPEG-2和非单声道
13-16
MPEG-2和单声道
41-44
标志,说明是否存储了帧数、文件长度、目录表和VBR规模信息,如果存储了,则01 02 04 08。
45-48
帧数(包括第一帧)
49-52
文件长度
53-152
目录表,用来按时间进行字节定位。
153-156
VBR规模,用于位率变动
另可参考下文:
This system was created to minimize file lengths and to preserve sound quality.
Higher frequencies generally needs more space for encoding (thats why many codecs cut all
frequencies above cca 16kHz) and lower tones requires less. So if some part of song doesnt consistof higher tones then using eg. 192kbps is wasting of space. It should be enough to use only eg.96kbps.
And it is the principle of VBR. Codec looks over frame and then choose bitrate suitable for itssound quality.
It sounds perfect but it brings some problems:
If you want to jump over 2 minutes in song, it is not a problem with CBR because you are able
simply count amount of Bytes which is necessary to skip. But it is impossible with VBR. Frame
lengths should be arbitrary so you have to either go frame by frame and counts (time consuming
and very unpractical) or use another mechanism for approximate count.
If you want to cut 5 minutes from the middle of VBR file (all we know CDs where last song takes
10 minutes but 5 minutes is a pure silence, HELL!) problems are the same.
Result? VBR files are more difficult for controlling and adjusting. And I dont like feeling that
sound quality changes in every moment. And AFAIK many codecs have problems with creation VBR ingood quality.
Personally I cant see any reason why to use VBR - I dont give a fuck if size of one CD in MP3is 55 MB with CBR or 51 MB with VBR. But everybody has a different taste... some people preferVBR.
VBR File Structureis the same as for CBR. But the first frame doesnt contain audio data and it is used for special
information about VBR file.
Structure of the first frame:
Byte Content
0-3 Standard audio frame header (as descripted above). Mostly it contains values FF
FB 30 4C, from which you can count FrameLen = 156 Bytes. And thats exactly enough
space for storing VBR info.
This header contains some important information valid for the whole file:
- MPEG (MPEG1 or MPEG2)
- SAMPLING rate frequency index
- CHANNEL (JointStereo etc.)
4-x Not used till string "Xing" (58 69 6E 67). This string is used as a main VBR file
identifier. If it is not found, file is supposed to be CBR. This string can be placed
at different locations according to values of MPEG and CHANNEL (ya, these from a
few lines upwards):
36-39 "Xing" for MPEG1 and CHANNEL != mono (mostly used)
21-24 "Xing" for MPEG1 and CHANNEL == mono
21-24 "Xing" for MPEG2 and CHANNEL != mono
13-16 "Xing" for MPEG2 and CHANNEL == mono
After "Xing" string there are placed flags, number of frames in file and a size
of file in Bytes. Each of these items has 4 Bytes and it is stored as 'int' number
in memory. The first is the most significant Byte and the last is the least.
Following schema is for MPEG1 and CHANNEL != mono:
40-43 Flags
Value Name Description
00 00 00 01 Frames Flag set if value for number of frames in file is stored
00 00 00 02 Bytes Flag set if value for filesize in Bytes is stored
00 00 00 04 TOC Flag set if values for TOC (see below) are stored
00 00 00 08 VBR Scale Flag set if values for VBR scale are stored
All these values can be stored simultaneously.
44-47 Frames
Number of frames in file (including the first info one)
48-51 Bytes
File length in Bytes
52-151 TOC (Table of Contents)
Contains of 100 indexes (one Byte length) for easier lookup in file. Approximately
solves problem with moving inside file.
Each Byte has a value according this formula:
(TOC[i] / 256) * fileLenInBytes
So if song lasts eg. 240 sec. and you want to jump to 60. sec. (and file is 5 000
000 Bytes length) you can use:
TOC[(60/240)*100] = TOC[25]
and corresponding Byte in file is then approximately at:
(TOC[25]/256) * 5000000
If you want to trim VBR file you should also reconstruct Frames, Bytes and TOC
properly.
152-155 VBR Scale
I dont know exactly system of storing of this values but this item probably doesnt
have deeper meaning.
四、ID3标准
MP3帧头中除了存储一些象private、copyright、original的简单音乐说明信息以外,没有考虑存放歌名、作者、专辑名、年份等复杂信息,而这些信息在MP3应用中非常必要。1996年,FricKemp在“Studio 3”项目中提出了在MP3文件尾增加一块用于存放歌曲的说明信息,形成了ID3标准,至今已制定出ID3 V1.0,V1.1,V2.0,V2.3和V2.4标准。版本越高,记录的相关信息就越丰富详尽。
1. ID3V1
ID3 V1.0标准并不周全,存放的信息少,无法存放歌词,无法录入专辑封面、图片等。V2.0是一个相当完备的标准,但给编写软件带来困难,虽然赞成此格式的人很多,在软件中真正实现的却极少。绝大多数MP3仍使用ID3 V1.0标准。此标准是将MP3文件尾的最后128个字节用来存放ID3信息,这128个字节使用说明见表3。
表3 ID3 V1.0文件尾说明
字节
长度 (字节)
说 明
1-3
3
存放“TAG”字符,表示ID3 V1.0标准,紧接其后的是歌曲信息。
4-33
30
歌名
34-63
30
作者
64-93
30
专辑名
94-97
4
年份
98-127
30
附注
128
1
MP3音乐类别,共147种。
表4 MP3音乐类别:
0
'Blues'
20
'Alternative'
40
'AlternRock'
60
'Top 40'
1
'Classic Rock'
21
'Ska'
41
'Bass'
61
'Christian Rap'
2
'Country'
22
'Death Metal'
42
'Soul'
62
'Pop/Funk'
3
'Dance'
23
'Pranks'
43
'Punk'
63
'Jungle'
4
'Disco'
24
'Soundtrack'
44
'Space'
64
'Native American'
5
'Funk'
25
'Euro-Techno'
45
'Meditative'
65
'Cabaret'
6
'Grunge'
26
'Ambient'
46
'Instrumental Pop'
66
'New Wave'
7
'Hip-Hop'
27
'Trip-Hop'
47
'Instrumental Rock'
67
'Psychadelic'
8
'Jazz'
28
'Vocal'
48
'Ethnic'
68
'Rave'
9
'Metal'
29
'Jazz+Funk'
49
'Gothic'
69
'Showtunes'
10
'New Age'
30
'Fusion'
50
'Darkwave'
70
'Trailer'
11
'Oldies'
31
'Trance'
51
'Techno-Industrial'
71
'Lo-Fi'
12
'Other'
32
'Classical'
52
'Electronic'
72
'Tribal'
13
'Pop'
33
'Instrumental'
53
'Pop-Folk'
73
'Acid Punk'
14
'R&B'
34
'Acid'
54
'Eurodance'
74
'Acid Jazz'
15
'Rap'
35
'House'
55
'Dream'
75
'Polka'
16
'Reggae'
36
'Game'
56
'Southern Rock'
76
'Retro'
17
'Rock'
37
'Sound Clip'
57
'Comedy'
77
'Musical'
18
'Techno'
38
'Gospel'
58
'Cult'
78
'Rock & Roll'
19
'Industrial'
39
'Noise'
59
'Gangsta'
79
'Hard Rock'
80
Folk
81
Folk/Rock
82
National Folk
83
Swing
84
Fast-Fusion
85
Bebob
86
Latin
87
Revival
88
Celtic
89
Bluegrass
90
Advantgarde
91
Gothic Rock
92
Progressive Rock
93
Psychadelic Rock
94
Symphonic Rock
95
Slow Rock
96
Big Band
97
Chorus
98
Easy Listening
99
Acoustic
100
Humour
101
Speech
102
Chanson
103
Opera
104
Chamber Music
105
Sonata
106
Symphony
107
Booty Bass
108
Primus
109
Porn Groove
110
Satire
111
Slow Jam
112
Club
113
Tango
114
Samba
115
Folklore
Any other value should be considered as 'Unknown'
2. ID3V2
ID3V2 到现在一共有 4 个版本,但流行的播放软件一般只支持第 3 版,既 ID3v2.3。由于 ID3V1 记录
在 MP3 文件的末尾,ID3V2 就只好记录在 MP3 文件的首部了(如果有一天发布 ID3V3,真不知道该记录在哪
里)。也正是由于这个原因,对 ID3V2 的操作比 ID3V1 要慢。而且 ID3V2 结构比 ID3V1 的结构要复杂得多,
但比前者全面且可以伸缩和扩展。
下面就介绍一下 ID3V2.3。
每个 ID3V2.3 的标签都一个标签头和若干个标签帧或一个扩展标签头组成。关于曲目的信息如标题、作者
等都存放在不同的标签帧中,扩展标签头和标签帧并不是必要的,但每个标签至少要有一个标签帧。标签
头和标签帧一起顺序存放在 MP3 文件的首部。
1、标签头
在文件的首部顺序记录 10 个字节的 ID3V2.3 的头部。数据结构如下:
char Header[3]; /*必须为"ID3"否则认为标签不存在*/
char Ver; /*版本号 ID3V2.3 就记录 3*/
char Revision; /*副版本号此版本记录为 0*/
char Flag; /*存放标志的字节,这个版本只定义了三位,稍后详细解说*/
char Size[4]; /*标签大小,包括标签头的 10 个字节和所有的标签帧的大小*/
1).标志字节
标志字节一般为 0,定义如下:
abc00000
a -- 表示是否使用 Unsynchronisation(这个单词不知道是什么意思,字典里也没有找到,一般不设置)
b -- 表示是否有扩展头部,一般没有(至少 Winamp 没有记录),所以一般也不设置
c -- 表示是否为测试标签(99.99%的标签都不是测试用的啦,所以一般也不设置)
2).标签大小
一共四个字节,但每个字节只用 7 位,最高位不使用恒为 0。所以格式如下
0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx
计算大小时要将 0 去掉,得到一个 28 位的二进制数,就是标签大小(不懂为什么要这样做),计算公式如
下:
int total_size;
total_size = (Size[0]&0x7F)*0x200000
+(Size[1]&0x7F)*0x400
+(Size[2]&0x7F)*0x80
+(Size[3]&0x7F)
2、标签帧
每个标签帧都有一个 10 个字节的帧头和至少一个字节的不固定长度的内容组成。 它们也是顺序存放在文件
中,和标签头和其他的标签帧也没有特殊的字符分隔。得到一个完整的帧的内容只有从帧头中的到内容大
小后才能读出,读取时要注意大小,不要将其他帧的内容或帧头读入。
帧头的定义如下:
char FrameID[4]; /*用四个字符标识一个帧,说明其内容,稍后有常用的标识对照表*/
char Size[4]; /*帧内容的大小,不包括帧头,不得小于 1*/
char Flags[2]; /*存放标志,只定义了 6 位,稍后详细解说*/
1).帧标识
用四个字符标识一个帧,说明一个帧的内容含义,常用的对照如下:
TIT2=标题 表示内容为这首歌的标题,下同
TPE1=作者
TALB=专集
TRCK=音轨 格式:N/M 其中 N 为专集中的第 N 首,M 为专集中共 M 首,N 和 M 为 ASCII 码表示的数字
TYER=年代 是用 ASCII 码表示的数字
TCON=类型 直接用字符串表示
COMM=备注 格式:"eng\0 备注内容",其中 eng 表示备注所使用的自然语言
2).大小
这个可没有标签头的算法那么麻烦,每个字节的 8 位全用,格式如下
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
算法如下:
int FSize;
FSize = Size[0]*0x100000000
+Size[1]*0x10000
+Size[2]*0x100
+Size[3];
3).标志
只定义了 6 位,另外的 10 位为 0,但大部分的情况下 16 位都为 0 就可以了。格式如下:
abc00000 ijk00000
a -- 标签保护标志,设置时认为此帧作废
b -- 文件保护标志,设置时认为此帧作废
c -- 只读标志,设置时认为此帧不能修改(但我没有找到一个软件理会这个标志)
i -- 压缩标志,设置时一个字节存放两个 BCD 码表示数字
j -- 加密标志(没有见过哪个 MP3 文件的标签用了加密)
k -- 组标志,设置时说明此帧和其他的某帧是一组
值得一提的是 winamp 在保存和读取帧内容的时候会在内容前面加个'\0',并把这个字节计算在帧内容的
大小中。
附:帧标识的含义
4). Declared ID3v2 frames
The following frames are declared in this draft.
AENC Audio encryption
APIC Attached picture
COMM Comments
COMR Commercial frame
ENCR Encryption method registration
EQUA Equalization
ETCO Event timing codes
GEOB General encapsulated object
GRID Group identification registration
IPLS Involved people list
LINK Linked information
MCDI Music CD identifier
MLLT MPEG location lookup table
OWNE Ownership frame
PRIV Private frame
PCNT Play counter
POPM Popularimeter
POSS Position synchronisation frame
RBUF Recommended buffer size
RVAD Relative volume adjustment
RVRB Reverb
SYLT Synchronized lyric/text
SYTC Synchronized tempo codes
TALB Album/Movie/Show title
TBPM BPM (beats per minute)
TCOM Composer
TCON Content type
TCOP Copyright message
TDAT Date
TDLY Playlist delay
TENC Encoded by
TEXT Lyricist/Text writer
TFLT File type
TIME Time
TIT1 Content group description
TIT2 Title/songname/content description
TIT3 Subtitle/Description refinement
TKEY Initial key
TLAN Language(s)
TLEN Length
TMED Media type
TOAL Original album/movie/show title
TOFN Original filename
TOLY Original lyricist(s)/text writer(s)
TOPE Original artist(s)/performer(s)
TORY Original release year
TOWN File owner/licensee
TPE1 Lead performer(s)/Soloist(s)
TPE2 Band/orchestra/accompaniment
TPE3 Conductor/performer refinement
TPE4 Interpreted, remixed, or otherwise modified by
TPOS Part of a set
TPUB Publisher
TRCK Track number/Position in set
TRDA Recording dates
TRSN Internet radio station name
TRSO Internet radio station owner
TSIZ Size
TSRC ISRC (international standard recording code)
TSSE Software/Hardware and settings used for encoding
TYER Year
TXXX User defined text information frame
UFID Unique file identifier
USER Terms of use
USLT Unsychronized lyric/text transcription
WCOM Commercial information
WCOP Copyright/Legal information
WOAF Official audio file webpage
WOAR Official artist/performer webpage
WOAS Official audio source webpage
WORS Official internet radio station homepage
WPAY Payment
WPUB Publishers official webpage
WXXX User defined URL link frame
五、MP3文件实例剖析
在VC++中打开一个名为test.mp3文件,其内容如下:
000000 FF FB 52 8C 00 00 01 49 09 C5 05 24 60 00 2A C1
000010 19 40 A6 00 00 05 96 41 34 18 20 80 08 26 48 29
000020 83 04 00 01 61 41 40 50 10 04 00 C1 21 41 50 64
……
0000D0 FE FF FB 52 8C 11 80 01 EE 90 65 6E 08 20 02 30
0000E0 32 0C CD C0 04 00 46 16 41 89 B8 01 00 08 36 48
0000F033 B7 00 00 01 02 FF FF FF F4 E1 2F FF FF FF FF
……
0001A0 DF FF FF FB 52 8C 12 00 01 FE 90 58 6E 09 A0 02
0001B0 33 B0 CA 85 E1 50 01 45 F6 19 61 BC 26 80 28 7C
0001C0 05 AC B4 20 28 94 FF FF FF FF FF FF FF FF FF FF
……
001390 7F FF FF FF FD 4E 00 54 41 47 54 45 53 54 00 00
0013A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
……
0013F000 00 00 00 04 19 14 03 00 00 00 00 00 00 00 00
001400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
001410 00 00 00 00 00 00 4E
该文件长度1416H(5.142K),帧头为:FF FB 52 8C,转换成二进制为:
11111111 11111011
01010010 10001100
对照表1可知,test.mp3帧头信息见表5。
表5 test.mp3文件帧头信息
名称
位值
说 明
同步信息
11111111111
第1字节恒为FF,11位均为1。
版本
11
MPEG 1
层
01
Layer 3
CRC校验
1
不校验
位率
0101
64kbps
频率
00
44.1kHz
帧长调节
1
调整,帧长是210字节。
保留字
0
没有使用。
声道模式
10
双声道
扩充模式
00
未使用。
版权
1
合法
原版标志
1
原版
强调方式
00
未定义
第1397H开始的三个字节是54 41 47,存放的是字符“TAG”,表示此文件有ID3 V1.0信息。
139AH开始的30个字节存放歌名,前4个非00字节是54 45 53 54,表示“TEST”;
13F4H开始的4个字节是04 19 14 03,存放年份“04/25/2003”;
最后1个字节是4E,表示音乐类别,代号为78,即“Rock&Roll”;
其它字节均为00,未存储信息。
六、资料
www.id3.org
发表评论
-
vc下mp3 IDv1和IDV2的读取
2010-01-25 10:52 2464/*这是修改后的代码,VC下读ID3v2 & ID3v ... -
使用ffmpeg为库编写的小型多媒体播放器源代码
2010-01-21 16:52 4410今天突发奇想,就在以前音频播放器(详细情况请看这里——http ... -
ffmpeg提取音频播放器总结
2010-01-21 16:31 6071ffmpeg提取音频播放器总 ... -
ffmpeg开发指南
2010-01-20 17:26 3420ffmpeg 中的Libavformat 和 li ... -
linux下安装ffmpeg过程
2010-01-18 15:48 1932最近互联网视频共享的 ... -
【PNG overview】PNG专题!
2010-01-18 13:39 3438【PNG overview】PNG专题! 作者 鼯鼠 ... -
Big Endian 和 Little Endian
2010-01-18 13:29 1581Peter Lee 2008-04-20 一、字节序 ... -
MediaInfo开源工程
2010-01-18 13:22 2430一、简介 MediaInfo 用来 ... -
LAME-mp3
2010-01-18 10:40 2084LAME - 压缩 MP3 的最佳利 ... -
FLV文件格式分析(图示讲解的清楚)
2010-01-14 15:56 5145FLV是一个二进制文件, ... -
我对FLV 文件格式的理解
2010-01-14 15:52 3418我对FLV 文件格式的理解 ----------------- ... -
常用的音频文件介绍
2010-01-13 10:56 1440MP3全称是动态影像专家压缩标准音频层面3(Moving Pi ... -
RTSP客户端的JAVA实现
2010-01-12 16:12 8412参考资料 1. 《RTSP简单命 ... -
国外嵌入式、音视频处理等重要网站
2010-01-08 10:07 2070嵌入式方面: 1.关于嵌入式开发的站点,提供非常多关于嵌入 ... -
RTSP点播——消息流程实例
2010-01-08 09:44 5152RTSP点播消息流程实例(客户端:VLC, RTSP服务器:L ... -
live555代码解读之三:SETUP和PLAY请求消息处理过程
2010-01-08 09:43 3522SETUP请求消息处理过程 ... -
live555代码解读之二:DESCRIBE请求消息处理过程
2010-01-08 09:42 3848ve555代码解读之二:DESCRIBE请求消息处理过程 ... -
live555代码解读之一:RTSP连接的建立过程
2010-01-08 09:42 4472TSPServer类用于构建一个RTSP服务器,该类同时在其内 ... -
live555源代码概述
2010-01-08 09:41 3928述 liveMedia项目(http://www ... -
浅议SDP(会话描述协议)
2010-01-04 15:25 3614因为最近常常使用到SDP(会话描述协议Session Desc ...
相关推荐
MP3文件格式分析 MP3文件格式是目前最流行的音频压缩格式之一,它的文件结构主要由三个部分组成:TAG_V2(ID3V2)、Frame和TAG_V1(ID3V1)。下面我们将对每个部分进行详细的分析。 一、TAG_V2(ID3V2) TAG_V2是...
在实际应用中,MP3文件解析不仅可以用于播放,还可以用于音频编辑、转换、分析等多种场景。例如,音乐推荐系统可能会分析MP3文件的特征来推荐相似曲目;音频剪辑工具则需要解析MP3以实现精确的剪切和合并;而音频...
内容概要:本文详细探讨了在Simulink环境中构建的风火水储联合调频系统中,储能系统的荷电状态(SOC)对区域控制偏差(ACE)的影响。文中通过具体案例和MATLAB代码展示了储能系统在不同SOC水平下的表现及其对系统稳定性的作用。同时,文章比较了储能单独调频与风火水储联合调频的效果,强调了储能系统在应对风电波动性和提高系统响应速度方面的重要作用。此外,作者提出了针对SOC变化率的参数整定方法以及多电源协同工作的优化策略,旨在减少ACE波动并确保系统稳定运行。 适合人群:从事电力系统调频研究的专业人士,尤其是熟悉Simulink仿真工具的研究人员和技术人员。 使用场景及目标:适用于希望深入了解储能系统在电力系统调频中作用的研究者和技术人员,目标是通过合理的SOC管理和多电源协同工作,优化调频效果,提高系统稳定性。 其他说明:文章提供了详细的MATLAB代码片段,帮助读者更好地理解和应用所讨论的概念。同时,文中提到的实际案例和仿真结果为理论分析提供了有力支持。
内容概要:本文深入探讨了欧姆龙PLC NJ系列中大型程序中结构化编程与面向对象编程的结合及其应用。首先介绍了结构化编程作为程序框架的基础,通过功能块(FB)实现清晰的程序结构和流程控制。接着阐述了面向对象编程的理念,将现实世界的对象映射到程序中,利用类的概念实现模块化和可扩展性。两者结合提高了程序的容错率,增强了程序的稳定性和可维护性。文中通过多个实际案例展示了如何在工业自动化领域中应用这两种编程方法,如电机控制、设备类的创建、异常处理机制、接口实现多态性、配方管理和报警处理等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些希望提升PLC编程技能的人群。 使用场景及目标:适用于需要优化PLC程序结构、提高程序可靠性和可维护性的场合。目标是帮助工程师掌握结构化编程和面向对象编程的技巧,从而写出更加高效、稳定的PLC程序。 其他说明:文章强调了在实际项目中灵活运用两种编程方法的重要性,并提醒读者注意实时性要求高的动作控制应采用结构化编程,而工艺逻辑和HMI交互则更适合面向对象编程。
matlab与聚类分析。根据我国历年职工人数(单位:万人),使用有序样品的fisher法聚类。
卡尔曼滤波生成航迹测量程序
内容概要:本文详细介绍了利用格子玻尔兹曼方法(LBM)对多孔电极浸润特性的模拟研究。首先阐述了LBM的基本原理,包括碰撞和迁移两个关键步骤,并提供了相应的Python伪代码。接着讨论了如何处理多孔介质中的固体边界,特别是通过随机算法生成孔隙结构以及结合CT扫描数据进行三维重构的方法。文中还探讨了表面张力、接触角等因素对浸润过程的影响,并给出了具体的数学表达式。此外,文章提到了并行计算的应用,如使用CUDA加速大规模网格计算,以提高模拟效率。最后,作者分享了一些实用技巧,如通过调整松弛时间和润湿性参数来优化模拟效果,并强调了LBM在处理复杂几何结构方面的优势。 适合人群:从事电池研发、材料科学领域的研究人员和技术人员,尤其是关注多孔电极浸润性和电解液扩散机制的人群。 使用场景及目标:适用于希望深入了解多孔电极内部流体动力学行为的研究者,旨在帮助他们更好地理解和预测电极材料的浸润特性,从而改进电池设计和性能。 其他说明:尽管LBM在处理多孔介质方面表现出色,但在某些极端条件下仍需引入额外的修正项。同时,参数的选择和边界条件的设定对最终结果有着重要影响,因此需要谨慎对待。
内容概要:本文详细介绍了在Zynq扩展口上使用FPGA和W5500实现TCP网络通信的过程。作者通过一系列实验和技术手段,解决了多个实际问题,最终实现了稳定的数据传输。主要内容包括:硬件搭建(SPI接口配置)、数据回环处理、压力测试及优化、多路复用扩展以及上位机测试脚本的编写。文中提供了大量Verilog代码片段,展示了如何通过状态机控制SPI通信、优化数据缓存管理、处理中断等问题。 适合人群:对FPGA开发和网络通信感兴趣的工程师,尤其是有一定Verilog编程基础的研发人员。 使用场景及目标:适用于需要在嵌入式系统中实现高效、稳定的TCP通信的应用场景。目标是帮助读者掌握FPGA与W5500结合进行网络通信的具体实现方法和技术细节。 其他说明:文章不仅提供了详细的代码实现,还分享了许多实践经验,如硬件连接注意事项、信号完整性问题的解决方案等。此外,作者还提到了未来的工作方向,如UDP组播和QoS优先级控制的实现。
python3.10以上 可安装pyside6(类似pyqt),具体安装操作步骤
内容概要:本文详细介绍了利用有限差分时域法(FDTD)进行可调谐石墨烯超材料吸收体的设计与仿真。文中解释了石墨烯超材料的基本结构(三层“三明治”结构)、关键参数(如化学势、周期、厚度等)及其对吸收性能的影响。同时展示了如何通过调整石墨烯的化学势来实现吸收峰的位置和强度的变化,以及如何优化结构参数以获得最佳的吸收效果。此外,还提供了具体的代码示例,帮助读者理解和重现相关实验结果。 适合人群:从事纳米光子学、超材料研究的专业人士,尤其是对石墨烯基超材料感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于希望深入了解石墨烯超材料的工作原理及其潜在应用场景的研究人员;旨在探索新型可调谐光学器件的设计思路和发展方向。 其他说明:文中不仅分享了理论知识,还包括了许多实践经验,如避免常见错误、提高仿真相关效率的小技巧等。对于想要将研究成果应用于实际产品的团队来说,这些细节非常有价值。
随机生成2字,3字,4字,5字,6字,7字,8字,9字,10字的中文词组20个
内容概要:本文详细探讨了智能座舱域控设计的发展历程和技术趋势。首先介绍了智能座舱从被动式交互到主动式交互的技术演变,包括硬件和交互方式的进步。随后,文章重点讨论了智能座舱功能发展趋势,涵盖车载显示技术的多屏化、大屏化和高端化,以及SoC芯片的多核异构架构和算力融合,强调了其在智能座舱中的核心作用。此外,还阐述了电子电气架构从分布式向集成化的转型,分析了其面临的挑战和未来趋势。最后,基于当前智能座舱的发展需求,提出了一种基于双片龍鷹一号芯片的新域控平台设计方案,详细描述了其硬件设计实现方案,旨在提供高性能、高可靠性的智能座舱解决方案。 适合人群:汽车电子工程师、智能座舱研发人员及相关领域的技术人员。 使用场景及目标:①帮助读者理解智能座舱的技术发展历程及其未来发展方向;②为智能座舱域控平台的设计和开发提供参考和技术支持;③探讨电子电气架构的转型对汽车行业的影响及应对策略。 其他说明:文章结合实际案例和技术数据,深入浅出地解释了智能座舱的各项技术细节,不仅提供了理论指导,还具有较强的实践意义。通过对智能座舱域控平台的全面剖析,有助于推动智能座舱技术的创新发展,提升用户体验。
内容概要:本文详细介绍了多智能体协同编队控制的技术原理及其应用实例。首先通过生动形象的例子解释了编队控制的核心概念,如一致性算法、虚拟结构法和Leader-Follower模式。接着深入探讨了如何用Python实现基础的一致性控制,以及如何通过调整参数(如Kp、Ka)来优化编队效果。文中还讨论了实际工程中常见的问题,如通信延迟、避障策略和动态拓扑变化,并给出了相应的解决方案。最后,强调了参数调试的重要性,并分享了一些实用技巧,如预测补偿、力场融合算法和分布式控制策略。 适合人群:对多智能体系统、无人机编队控制感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解多智能体协同编队控制理论并能够将其应用于实际项目的研究人员和开发者。目标是帮助读者掌握编队控制的关键技术和实现方法,提高系统的稳定性和可靠性。 其他说明:文章不仅提供了详细的理论讲解,还附有具体的代码示例,便于读者理解和实践。同时,作者结合自身经验分享了许多宝贵的调试技巧和注意事项,有助于读者在实际应用中少走弯路。
评估管线钢环焊缝质量及其对氢脆的敏感性.pptx
C盘清理bat脚本自动清理C盘垃圾文件
GBT21266-2007 辣椒及辣椒制品中辣椒素类物质测定及辣度表示方法
弹跳球 XNA 游戏项目。演示如何使用 C# 在 Visual Studio XNA 中构建类似 arkanoiddx-ball 的游戏。
内容概要:文章全面解析了宇树科技人形机器人的发展现状、技术实力、市场炒作现象及其应用前景和面临的挑战。宇树科技成立于2016年,凭借春晚舞台的惊艳亮相和社交媒体的热议迅速走红,其人形机器人具备先进的运动控制算法、传感器技术和仿生结构设计。然而,市场炒作现象如高价租赁、二手市场炒作和虚假宣传等影响了市场秩序。尽管存在炒作,人形机器人在工业、服务和家庭领域仍具广阔前景,但也面临技术升级、成本控制、安全性和政策监管等挑战。 适合人群:对机器人技术、人工智能以及科技发展趋势感兴趣的读者,包括科技爱好者、投资者和相关行业的从业者。 使用场景及目标:①帮助读者了解宇树科技人形机器人的技术特点和发展历程;②揭示市场炒作现象及其影响;③探讨人形机器人的应用前景和面临的挑战。 其他说明:文章强调了宇树科技人形机器人在技术上的突破和市场上的表现,同时也提醒读者关注市场炒作现象带来的风险,呼吁各方共同努力推动人形机器人产业健康发展。
msvcp140.dll丢失怎样修复