Java NIO原理图文分析及代码实现
前言:
最近在分析hadoop的RPC(Remote Procedure Call Protocol ,远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。可以参考:http://baike.baidu.com/view/32726.htm )机制时,发现hadoop的RPC机制的实现主要用到了两个技术:动态代理(动态代理可以参考博客:http://weixiaolu.iteye.com/blog/1477774 )和java NIO。为了能够正确地分析hadoop的RPC源码,我觉得很有必要先研究一下java NIO的原理和具体实现。
这篇博客我主要从两个方向来分析java NIO
目录:
一.java NIO 和阻塞I/O的区别
1. 阻塞I/O通信模型
2. java NIO原理及通信模型
二.java NIO服务端和客户端代码实现
具体分析:
一.java NIO 和阻塞I/O的区别
1. 阻塞I/O通信模型
假如现在你对阻塞I/O已有了一定了解,我们知道阻塞I/O在调用InputStream.read()方法时是阻塞的,它会一直等到数据到来时(或超时)才会返回;同样,在调用ServerSocket.accept()方法时,也会一直阻塞到有客户端连接才会返回,每个客户端连接过来后,服务端都会启动一个线程去处理该客户端的请求。阻塞I/O的通信模型示意图如下:
如果你细细分析,一定会发现阻塞I/O存在一些缺点。根据阻塞I/O通信模型,我总结了它的两点缺点:
1. 当客户端多时,会创建大量的处理线程。且每个线程都要占用栈空间和一些CPU时间
2. 阻塞可能带来频繁的上下文切换,且大部分上下文切换可能是无意义的。
在这种情况下非阻塞式I/O就有了它的应用前景。
2. java NIO原理及通信模型
Java NIO是在jdk1.4开始使用的,它既可以说成“新I/O”,也可以说成非阻塞式I/O。下面是java NIO的工作原理:
1. 由一个专门的线程来处理所有的 IO 事件,并负责分发。
2. 事件驱动机制:事件到的时候触发,而不是同步的去监视事件。
3. 线程通讯:线程之间通过 wait,notify 等方式通讯。保证每次上下文切换都是有意义的。减少无谓的线程切换。
阅读过一些资料之后,下面贴出我理解的java NIO的工作原理图:
(注:每个线程的处理流程大概都是读取数据、解码、计算处理、编码、发送响应。)
Java NIO的服务端只需启动一个专门的线程来处理所有的 IO 事件,这种通信模型是怎么实现的呢?呵呵,我们一起来探究它的奥秘吧。java NIO采用了双向通道(channel)进行数据传输,而不是单向的流(stream),在通道上可以注册我们感兴趣的事件。一共有以下四种事件:
事件名 | 对应值 |
服务端接收客户端连接事件 | SelectionKey.OP_ACCEPT(16) |
客户端连接服务端事件 | SelectionKey.OP_CONNECT(8) |
读事件 | SelectionKey.OP_READ(1) |
写事件 | SelectionKey.OP_WRITE(4) |
服务端和客户端各自维护一个管理通道的对象,我们称之为selector,该对象能检测一个或多个通道 (channel) 上的事件。我们以服务端为例,如果服务端的selector上注册了读事件,某时刻客户端给服务端发送了一些数据,阻塞I/O这时会调用read()方法阻塞地读取数据,而NIO的服务端会在selector中添加一个读事件。服务端的处理线程会轮询地访问selector,如果访问selector时发现有感兴趣的事件到达,则处理这些事件,如果没有感兴趣的事件到达,则处理线程会一直阻塞直到感兴趣的事件到达为止。下面是我理解的java NIO的通信模型示意图:
二.java NIO服务端和客户端代码实现
为了更好地理解java NIO,下面贴出服务端和客户端的简单代码实现。
服务端:
package cn.nio; import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.SelectionKey; import java.nio.channels.Selector; import java.nio.channels.ServerSocketChannel; import java.nio.channels.SocketChannel; import java.util.Iterator; /** * NIO服务端 * @author 小路 */ public class NIOServer { //通道管理器 private Selector selector; /** * 获得一个ServerSocket通道,并对该通道做一些初始化的工作 * @param port 绑定的端口号 * @throws IOException */ public void initServer(int port) throws IOException { // 获得一个ServerSocket通道 ServerSocketChannel serverChannel = ServerSocketChannel.open(); // 设置通道为非阻塞 serverChannel.configureBlocking(false); // 将该通道对应的ServerSocket绑定到port端口 serverChannel.socket().bind(new InetSocketAddress(port)); // 获得一个通道管理器 this.selector = Selector.open(); //将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_ACCEPT事件,注册该事件后, //当该事件到达时,selector.select()会返回,如果该事件没到达selector.select()会一直阻塞。 serverChannel.register(selector, SelectionKey.OP_ACCEPT); } /** * 采用轮询的方式监听selector上是否有需要处理的事件,如果有,则进行处理 * @throws IOException */ @SuppressWarnings("unchecked") public void listen() throws IOException { System.out.println("服务端启动成功!"); // 轮询访问selector while (true) { //当注册的事件到达时,方法返回;否则,该方法会一直阻塞 selector.select(); // 获得selector中选中的项的迭代器,选中的项为注册的事件 Iterator ite = this.selector.selectedKeys().iterator(); while (ite.hasNext()) { SelectionKey key = (SelectionKey) ite.next(); // 删除已选的key,以防重复处理 ite.remove(); // 客户端请求连接事件 if (key.isAcceptable()) { ServerSocketChannel server = (ServerSocketChannel) key .channel(); // 获得和客户端连接的通道 SocketChannel channel = server.accept(); // 设置成非阻塞 channel.configureBlocking(false); //在这里可以给客户端发送信息哦 channel.write(ByteBuffer.wrap(new String("向客户端发送了一条信息").getBytes())); //在和客户端连接成功之后,为了可以接收到客户端的信息,需要给通道设置读的权限。 channel.register(this.selector, SelectionKey.OP_READ); // 获得了可读的事件 } else if (key.isReadable()) { read(key); } } } } /** * 处理读取客户端发来的信息 的事件 * @param key * @throws IOException */ public void read(SelectionKey key) throws IOException{ // 服务器可读取消息:得到事件发生的Socket通道 SocketChannel channel = (SocketChannel) key.channel(); // 创建读取的缓冲区 ByteBuffer buffer = ByteBuffer.allocate(10); channel.read(buffer); byte[] data = buffer.array(); String msg = new String(data).trim(); System.out.println("服务端收到信息:"+msg); ByteBuffer outBuffer = ByteBuffer.wrap(msg.getBytes()); channel.write(outBuffer);// 将消息回送给客户端 } /** * 启动服务端测试 * @throws IOException */ public static void main(String[] args) throws IOException { NIOServer server = new NIOServer(); server.initServer(8000); server.listen(); } }
客户端:
package cn.nio; import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.SelectionKey; import java.nio.channels.Selector; import java.nio.channels.SocketChannel; import java.util.Iterator; /** * NIO客户端 * @author 小路 */ public class NIOClient { //通道管理器 private Selector selector; /** * 获得一个Socket通道,并对该通道做一些初始化的工作 * @param ip 连接的服务器的ip * @param port 连接的服务器的端口号 * @throws IOException */ public void initClient(String ip,int port) throws IOException { // 获得一个Socket通道 SocketChannel channel = SocketChannel.open(); // 设置通道为非阻塞 channel.configureBlocking(false); // 获得一个通道管理器 this.selector = Selector.open(); // 客户端连接服务器,其实方法执行并没有实现连接,需要在listen()方法中调 //用channel.finishConnect();才能完成连接 channel.connect(new InetSocketAddress(ip,port)); //将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_CONNECT事件。 channel.register(selector, SelectionKey.OP_CONNECT); } /** * 采用轮询的方式监听selector上是否有需要处理的事件,如果有,则进行处理 * @throws IOException */ @SuppressWarnings("unchecked") public void listen() throws IOException { // 轮询访问selector while (true) { selector.select(); // 获得selector中选中的项的迭代器 Iterator ite = this.selector.selectedKeys().iterator(); while (ite.hasNext()) { SelectionKey key = (SelectionKey) ite.next(); // 删除已选的key,以防重复处理 ite.remove(); // 连接事件发生 if (key.isConnectable()) { SocketChannel channel = (SocketChannel) key .channel(); // 如果正在连接,则完成连接 if(channel.isConnectionPending()){ channel.finishConnect(); } // 设置成非阻塞 channel.configureBlocking(false); //在这里可以给服务端发送信息哦 channel.write(ByteBuffer.wrap(new String("向服务端发送了一条信息").getBytes())); //在和服务端连接成功之后,为了可以接收到服务端的信息,需要给通道设置读的权限。 channel.register(this.selector, SelectionKey.OP_READ); // 获得了可读的事件 } else if (key.isReadable()) { read(key); } } } } /** * 处理读取服务端发来的信息 的事件 * @param key * @throws IOException */ public void read(SelectionKey key) throws IOException{ //和服务端的read方法一样 } /** * 启动客户端测试 * @throws IOException */ public static void main(String[] args) throws IOException { NIOClient client = new NIOClient(); client.initClient("localhost",8000); client.listen(); } }
小结:
终于把动态代理和java NIO分析完了,呵呵,下面就要分析hadoop的RPC机制源码了,博客地址:http://weixiaolu.iteye.com/blog/1504898 。不过如果对java NIO的理解存在异议的,欢迎一起讨论。
如需转载,请注明出处:http://weixiaolu.iteye.com/blog/1479656
相关推荐
- **Java NIO原理及通信模型**:NIO采用了非阻塞的方式,通过一个单独的线程来处理所有IO事件,使用事件驱动机制,当事件发生时才进行处理。它依赖于选择器(Selector)来监控多个通道(Channel)上的事件,如连接...
2. **源代码**:源代码包是理解Tomcat内部工作原理和进行自定义修改的关键。通过查看源代码,开发者可以深入学习Tomcat的生命周期管理、请求处理流程、连接器(Connector)和容器(Container)架构等核心概念。 3. ...
JESD79-2F DDR2 JESD79-3F DDR3 JESD79-4D DDR4 JESD79-5C DDR5 JESD209-2F LPDDR2 JESD209-3C LPDDR3 JESD209-4E LPDDR4 JESD209-4-1A LPDDR4X JESD209-5C LPDDR5(X)
COMSOL二维光子晶体角态研究:单胞与超胞能带计算及边界态与角态特性分析,COMSOL二维光子晶体角态研究:单胞与超胞能带计算及边界态与角态特性分析,comsol二维光子晶体角态。 单胞能带,超胞能带,边界态以及角态计算。 ,comsol;二维光子晶体;角态;单胞能带;超胞能带;边界态计算,基于Comsol的二维光子晶体角态及能带边界计算研究
六自由度机械臂抓取动作仿真与代码解析:抓取动画、关节参数变化及轨迹图解详解,六自由度机械臂抓取动作仿真指南:掌握两套代码实现动画与轨迹图模拟学习攻略,六自由度机械臂抓取动作仿真-8 两套关于抓取动作的代码,包括抓取动画、关节角、角速度、角加速度的变化仿真、以及抓取轨迹图 简单易懂好上手~ ,六自由度机械臂;抓取动作仿真;抓取动画;关节角变化;角速度角加速度;抓取轨迹图;两套代码;简单易懂好上手,六自由度机械臂抓取动作仿真演示:代码与轨迹图解
ITC网络广播工具软件
Multisim四位密码锁电路仿真设计:设定、开锁与声光报警功能演示资料包,Multisim四位密码锁电路仿真设计:设定、输入、开锁与报警功能详解,附源文件、原理说明书与演示视频,multisim四位密码锁电路仿真设计 功能: 1.通过拨码开关1进行初始密码设定。 2.通过拨码开关2输入密码,实现开锁判断。 3.如果密码正确,LED绿灯亮,表示开锁。 4.如果密码不正确,LED红灯亮,蜂鸣器鸣叫,声光报警。 资料包含:仿真源文件+原理说明书+演示视频 ,四位密码锁电路、Multisim仿真设计、初始密码设定;拨码开关输入;开锁判断;LED灯显示;声光报警;仿真源文件;原理说明书;演示视频,Multisim四位密码锁电路仿真设计:初始密码设置与智能解锁功能的声光报警展示
俗话说,摸鱼摸的好,上班没烦恼,毕竟谁能拒绝带薪拉屎呢(手动狗头) 这是一个云开发职场打工人专属上班摸鱼划水微信小程序源码,没有后台 直接导入微信开发者工具即可运行,UI简约大气漂亮,只需登录微信公众平台配置完合法域名即可轻松上线。 用户进入摸鱼小程序,可以自由设置薪资,上班时间、下班时间、发薪日、 月工作天数以提醒自己摸鱼,全民打酱油,让自己成为摸鱼冠军,《商鞅摸鱼哲学》 摸鱼不是自我放纵,而是个人实力的积蓄,我们的小目标是晚睡晚起 小程序中的今日待办会提醒用户带薪拉屎和闲逛,下方展示的是距离休息日的天数,距离下一次发工资的天数和节日的天数。
【毕业设计】基于Java的开发的一个集合校园二手交易、拼车、失物招领等功能的app_pgj
个人记录:PICkit3离线烧录流程 使用软件:MPLAB X IDE v5.30 记录时间:20250215
基于Matlab代码的电力系统状态估计与实验仿真研究:扩展卡尔曼滤波和无迹卡尔曼滤波在电力系统动态状态估计中的应用及效果分析,Matlab仿真实验研究:基于扩展卡尔曼滤波器与无迹卡尔曼滤波器对电力系统状态估计的影响及验证,状态估计 电力系统状态估计 Matlab代码 实验仿真研究 电力系统由于测量值和传输误差,还有测量噪声的影响,会对状态估计产生影响。 因此,需要对嘈杂的测量进行滤波,以获得准确的电力系统运行动态。 本文使用扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF)来估计电力系统的动态状态。 扩展卡尔曼滤波EKF、无迹卡尔曼滤波UKF 利用扩展的无迹卡尔曼滤波器估计了动力系统的动态状态。 对WECC 3机9总线系统和新英格兰10机39总线系统进行了案例研究。 结果表明EKF和UKF都能准确地估计电力系统的动态状态。 ,核心关键词:状态估计; 电力系统状态估计; Matlab代码; 实验仿真; 测量值误差; 测量噪声; 扩展卡尔曼滤波器(EKF); 无迹卡尔曼滤波器(UKF); 动力系统; 动态状态估计; WECC 3机9总线系统; 新英格兰10机39总线系统。,Matlab
springboot在线考试--
台达DVP EH3与MS300 PLC&变频器通讯程序的全面解决方案,台达DVP EH3与MS300通讯程序:稳定可靠的频率控制与启停管理系统,台达DVP EH3与台达MS300通讯程序(TDEH-9) 可直接用于实际的程序,程序带注释,并附送触摸屏程序,有接线方式和设置,通讯地址说明等。 程序采用轮询,可靠稳定 器件:台达DVP EH3系列PLC,台达MS300系列变频器,昆仑通态7022Ni 功能:实现频率设定,启停控制,实际频率读取,加减速时间设定。 资料:带注释程序,触摸屏程序,接线和设置说明,后续有技术咨询。 ,核心关键词:台达DVP EH3; 台达MS300; 通讯程序(TDEH-9); 轮询; 稳定; 频率设定; 启停控制; 实际频率读取; 加减速时间设定; 触摸屏程序; 接线方式; 设置说明; 技术咨询。,台达PLC与变频器通讯程序(带注释、触摸屏控制)
项目资源包含:可运行源码+sql文件 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。项目具有较高的学习借鉴价值,也可拿来修改、二次开发。 个人账户管理:支持用户注册、登录与个人信息编辑;提供密码找回及账号安全保护措施。 声纹采集:利用麦克风设备录制用户的声纹样本;支持多种录音格式和质量调整,确保采集到清晰、准确的声纹数据。 声纹模板库管理:建立和维护一个安全的声纹模板库;支持声纹模板的添加、删除、更新和查询操作。 声纹比对与识别:运用深度学习算法对输入的声纹数据进行特征提取和匹配;实现快速、准确的声纹身份验证。 多场景应用支持:适用于多种场景,如门禁系统、移动支付、远程登录等;可根据实际需求定制开发相应的应用场景。 实时监控与报警:实时监控系统运行状态,包括声纹识别成功率、处理速度等指标;当出现异常情况时,及时发出报警信息。 数据分析与报告生成:收集并分析声纹识别过程中的数据,如识别准确率、处理时间等;根据用户需求输出包含详细图表说明的专业级文档供下载打印保存。 社区互动交流:设立论坛版块鼓励用户分享心得体会讨论热点话题;定期邀请行业专家举办线上讲座传授实用技巧知识。 音乐筛选与推荐:集成音乐平台API,根据用户的浏览习惯和情绪状态推荐背景音乐,增强用户体验。 数据可视化:提供交互式的数据可视化面板,使非技术用户也能轻松理解复杂的数据集,从而做出更明智的决策。
三相与多相开绕组永磁同步电机仿真模型的先进控制策略探讨与实现,三相与多相开绕组永磁同步电机的Simulink仿真模型与先进控制策略研究,开绕组电机,开绕组永磁同步电机仿真模型、simulink仿真 共直流母线、独立直流母线,两相容错,三相容错控制,零序电流抑制,控制策略很多 三相开绕组永磁同步电机,六相开绕组永磁同步电机 五相开绕组永磁同步电机,五相开绕组电机 ,开绕组电机; 永磁同步电机仿真模型; simulink仿真; 共直流母线; 独立直流母线; 两相容错; 三相容错控制; 零序电流抑制; 控制策略; 六相开绕组永磁同步电机; 五相开绕组永磁同步电机,开绕组电机仿真研究:共直流母线与独立直流母线的容错控制策略
【毕业设计】基于Java的开发的网上汽车租赁管理系统_pgj
csv 模块是 Python 的标准库,无需额外安装。 运行结果如下图: ['姓名', '年龄', '城市'] ['张三', '25', '北京'] ['李四', '30', '上海'] ['王五', '22', '广州']
【毕业设计】基于Java+Springboot+Vue的宠物领养系统_pgj
让前端开发者学习“机器学习”!