科学的测试性能编辑
性能测试永远是复杂的,所以在你的方法里已经要尽可能的科学。 随机摆弄旋钮以及写入开关可不是做性能调优的好办法。如果有太多种 可能 ,我们就无法判断到底哪一种有最好的 效果 。合理的测试方法如下:
- 在单个节点上,对单个分片,无副本的场景测试性能。
- 在 100% 默认配置的情况下记录性能结果,这样你就有了一个对比基线。
- 确保性能测试运行足够长的时间(30 分钟以上)这样你可以评估长期性能,而不是短期的峰值或延迟。一些事件(比如段合并,GC)不会立刻发生,所以性能概况会随着时间继续而改变的。
- 开始在基线上逐一修改默认值。严格测试它们,如果性能提升可以接受,保留这个配置项,开始下一项。
使用批量请求并调整其大小编辑
显而易见的,优化性能应该使用批量请求。 批量的大小则取决于你的数据、分析和集群配置,不过每次批量数据 5–15 MB 大是个不错的起始点。注意这里说的是物理字节数大小。文档计数对批量大小来说不是一个好指标。比如说,如果你每次批量索引 1000 个文档,记住下面的事实:
- 1000 个 1 KB 大小的文档加起来是 1 MB 大。
- 1000 个 100 KB 大小的文档加起来是 100 MB 大。
这可是完完全全不一样的批量大小了。批量请求需要在协调节点上加载进内存,所以批量请求的物理大小比文档计数重要得多。
从 5–15 MB 开始测试批量请求大小,缓慢增加这个数字,直到你看不到性能提升为止。然后开始增加你的批量写入的并发度(多线程等等办法)。
用 Marvel 以及诸如 iostat
、 top
和 ps
等工具监控你的节点,观察资源什么时候达到瓶颈。如果你开始收到 EsRejectedExecutionException
,你的集群没办法再继续了:至少有一种资源到瓶颈了。或者减少并发数,或者提供更多的受限资源(比如从机械磁盘换成 SSD),或者添加更多节点。

写数据的时候,要确保批量请求是轮询发往你的全部数据节点的。不要把所有请求都发给单个节点,因为这个节点会需要在处理的时候把所有批量请求都存在内存里。
存储编辑
磁盘在现代服务器上通常都是瓶颈。Elasticsearch 重度使用磁盘,你的磁盘能处理的吞吐量越大,你的节点就越稳定。这里有一些优化磁盘 I/O 的技巧:
段和合并编辑
段合并的计算量庞大, 而且还要吃掉大量磁盘 I/O。合并在后台定期操作,因为他们可能要很长时间才能完成,尤其是比较大的段。这个通常来说都没问题,因为大规模段合并的概率是很小的。
不过有时候合并会拖累写入速率。如果这个真的发生了,Elasticsearch 会自动限制索引请求到单个线程里。这个可以防止出现 段爆炸 问题,即数以百计的段在被合并之前就生成出来。如果 Elasticsearch 发现合并拖累索引了,它会会记录一个声明有 now throttling indexing
的 INFO
级别信息。
Elasticsearch 默认设置在这块比较保守:不希望搜索性能被后台合并影响。不过有时候(尤其是 SSD,或者日志场景)限流阈值太低了。
默认值是 20 MB/s,对机械磁盘应该是个不错的设置。如果你用的是 SSD,可以考虑提高到 100–200 MB/s。测试验证对你的系统哪个值合适:
PUT /_cluster/settings {"persistent":{"indices.store.throttle.max_bytes_per_sec":"100mb"}}
如果你在做批量导入,完全不在意搜索,你可以彻底关掉合并限流。这样让你的索引速度跑到你磁盘允许的极限:
如果你使用的是机械磁盘而非 SSD,你需要添加下面这个配置到你的 elasticsearch.yml
里:
index.merge.scheduler.max_thread_count: 1
机械磁盘在并发 I/O 支持方面比较差,所以我们需要降低每个索引并发访问磁盘的线程数。这个设置允许 max_thread_count + 2
个线程同时进行磁盘操作,也就是设置为 1
允许三个线程。
对于 SSD,你可以忽略这个设置,默认是 Math.min(3, Runtime.getRuntime().availableProcessors() / 2)
,对 SSD 来说运行的很好。
最后,你可以增加 index.translog.flush_threshold_size
设置,从默认的 512 MB 到更大一些的值,比如 1 GB。这可以在一次清空触发的时候在事务日志里积累出更大的段。而通过构建更大的段,清空的频率变低,大段合并的频率也变低。这一切合起来导致更少的磁盘 I/O 开销和更好的索引速率。当然,你会需要对应量级的 heap 内存用以积累更大的缓冲空间,调整这个设置的时候请记住这点。
其他编辑
最后,还有一些其他值得考虑的东西需要记住:
- 如果你的搜索结果不需要近实时的准确度,考虑把每个索引的
index.refresh_interval
改到30s
。如果你是在做大批量导入,导入期间你可以通过设置这个值为-1
关掉刷新。别忘记在完工的时候重新开启它。 -
如果你在做大批量导入,考虑通过设置
index.number_of_replicas: 0
关闭副本。文档在复制的时候,整个文档内容都被发往副本节点,然后逐字的把索引过程重复一遍。这意味着每个副本也会执行分析、索引以及可能的合并过程。相反,如果你的索引是零副本,然后在写入完成后再开启副本,恢复过程本质上只是一个字节到字节的网络传输。相比重复索引过程,这个算是相当高效的了。
- 如果你没有给每个文档自带 ID,使用 Elasticsearch 的自动 ID 功能。 这个为避免版本查找做了优化,因为自动生成的 ID 是唯一的。
- 如果你在使用自己的 ID,尝试使用一种 Lucene 友好的 ID。包括零填充序列 ID、UUID-1 和纳秒;这些 ID 都是有一致的,压缩良好的序列模式。相反的,像 UUID-4 这样的 ID,本质上是随机的,压缩比很低,会明显拖慢 Lucene。
相关推荐
- **扩展性**:Hadoop和ES都支持水平扩展,可以根据业务需求动态增加节点来提高处理能力和查询性能。 **2.3 实践案例** - **日志分析**:Hadoop用于收集和处理大量的日志数据,ES则用于提供快速的查询服务,帮助...
在“elasticsearch-cache-benchmark”项目中,开发者可能使用Python的Elasticsearch库来连接和操作Elasticsearch实例,同时利用像pytest这样的测试框架来设计和执行各种缓存性能测试。 测试通常包括以下几个步骤: ...
本文将详细解析几种不同的JavaScript数组去重方法,并探讨它们的优缺点。 首先,介绍的是一种基础的去重方法,即创建一个新的结果数组,然后遍历原数组,通过比较判断是否已存在于结果数组中。这种做法可以称为...
内容概要:本文档详细介绍了 DeepSeek 这一高效、经济的人工智能解决方案,旨在为企业端、产品端以及开发者提供深度技术支持。对于企业而言,DeepSeek 带来了显著的成本效益和生产效率提升;而对于具体的产品和服务,它增强了用户体验的质量。特别是针对开发者,文档深入浅出地讲解了如何利用 DeepSeek 实现自动化代码生成、改写等辅助开发功能,并且提供了具体的步骤指导以满足不同环境下的部署需求,包括直接通过官方API接入、本地私有化部署或借助云平台进行托管的方式。 适合人群:希望降低开发门槛,提高工作效率的软件工程师和技术团队。 使用场景及目标:开发者可以根据自身条件选择最适合自己的部署方案来整合 DeepSeek 技术,进而达到优化编码过程、减少人为错误的目的。 其他说明:文中还包括了许多实际操作的例子,如通过代码改写的实例来展示如何改进现有程序段落,还有详细的API使用指南帮助初学者快速上手DeepSeek。此外,还提供了大量外部参考资料链接以便进一步扩展知识和技能范围。
lusted_3cd_01_0318
Cherry Studio是一款支持多模型服务的 Windows/macOS GPT 客户端。通过与Ollama搭配,搭建个人本地AI大模型
chromedriver-win64-136.0.7058.0.zip
matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
mellitz_3cd_01_1116
基于MATLAB的牛顿迭代法实现
steenman_01_0908
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
stone_3ck_01a_0518
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
lusted_3cd_01_1117
管理层情感语调,或称为管理层语调,是一个在财务与会计领域中常用的概念,特别是在分析上市公司信息披露质量时。它主要指的是管理层在上市公司文字信息披露过程中,用词所体现出的情感倾向和可理解性。 本数据复刻了《财经研究》《中南财经政法大学学报》等顶级期刊的核心解释变量的做法。情感语调对企业未来盈余和未来绩效具有较强解释力、降低会计信息误定价、为分析师预测提供增量信息,而投资者也会对管理层情感语调做出积极反应。 情感语调1=(正面词汇数量-负面词汇数量)/词汇总量;数值越大,情感倾向越偏向正面积极。 情感语调2=(正面词汇数量-负面词汇数量)/(正面词汇数量+负面词汇数量);数值越大,情感倾向越偏向正面积极。 指标 证券代码、企业代码、年份、证券简称、行业代码、行业名称、正面词汇数量、负面词汇数量、词汇总量、句子数量、文字数量、情感语调1、情感语调2。
mellitz_3cd_02_0318
moore_01_0909
lusted_3ck_02a_0119
pimpinella_3cd_01_0916