SVM相关资源汇总[matlab-libsvm-class-regress](by faruto)
SVM相关资源汇总[matlab-libsvm-class-regress](by faruto)
----关于SVM的那点破事
by faruto
可以了,终于可以完结了!这帖子我编辑过n次,不断的往里面添加东西,我想今晚可能是我最后一次编辑这个帖子.在这个帖子里面您可以找到如下和SVM相关的东西.
1.关于SVM的工具箱-libsvm-mat
(1)本帖子中的所有资源所使用的SVM的工具箱是libsvm-mat,没有使用其他的SVM工具箱,我坚信把这一个SVM的工具箱研究的透彻就够了,反正我是够用了!
(2)关于libsvm-mat的安装的问题,你可以看下面的Q&A,也可以下载相应的我制作的SVM的视频
(3)关于libsvm-mat工具箱本身的使用问题,几乎所有的疑问你都可以找到答案~
(4)关于libsvm-mat版本更新的问题,林智仁官方的最新版本是:libsvm-mat-2.89-3,在下面你可以找到下载的链接,官方网页上的链接有问题,我是向林直接要的.还有一个faruto版本的libsvm,最新的是[farutoFinalVersion],我在里面加进了各种SVM参数优化的子函数,方便使用.在下面亦有下载链接.
2.关于SVM的理论相关的.
在下面提供了一些资源和paper, ppt,pdf,虽然这几个资源是有限的,但我敢说足够了.原因有两个:a.下面的几个文献本身质量就很高.b.这些文献主要的SVM的参考文献已经几乎全部列出了,你可以寻径查找.
3.关于......
====================================================================
几乎 (almost everyone)关于你想问的有关libsvm的所有问题在这个帖子中都有答案.
so请详细阅读此帖子后.若你的问题找不到答案,再发帖~
libsvm-mat-2.89-3-[farutoFinalVersion]
libsvm-mat-2.89-3-[farutoUltimateVersion2.0]
farutoUltimateVersion2.0就是最后的版本号了。我不会再更新啦~大家就下载这个版本的就可以啦。虽说近期也有一些更新和优化,但整体都是在这个的基础上啦。
====================另 libsvm-mat-farutoversion 版本更新历史[版本号有点乱大家别介意.O(∩_∩)O]:
farutoUltimateVersion1.0:2009.10.28
http://www.ilovematlab.cn/viewthread.php?tid=54665&highlight=%2Bfaruto
libsvm-mat-2.89-3-[farutoFinalVersion+pca]:2009.10.28
http://www.ilovematlab.cn/viewthread.php?tid=54658&highlight=%2Bfaruto
libsvm-mat-2.89-3-[farutoFinalVersion]:2009.10.08
http://www.ilovematlab.cn/viewthread.php?tid=52388&highlight=%2Bfaruto
libsvm-mat-2.89-3-farutoVer2:2009.09.23
http://www.ilovematlab.cn/viewthread.php?tid=51166&highlight=%2Bfaruto
libsvm-mat-2.89-3-farutoVer1:2009.08.27
http://www.ilovematlab.cn/viewthread.php?tid=48175&highlight=%2Bfaruto
============
欢迎您购买 《MATLAB 神经网络30个案例分析》(我是作者之一)
SVM是该书的内容之一
购买方式:http://www.ilovematlab.cn/thread-47939-1-1.html
MATLAB 神经网络30个案例分析——目录
http://www.ilovematlab.cn/thread-59023-1-1.html
与该书配套的有该加强工具箱的详细的使用视频:
SVM讲解视频汇总[by faruto]http://www.ilovematlab.cn/thread-62252-1-1.html
================
关于SVM[libsvm]的常见问题整理[Q&A]
强烈建议您再发有关libsvm的问题前,看一下Q&A大多数的问题您在那里就会找到答案~~O(∩_∩)O
==============
==========SVM入门精品讲解系列 十连弹=============
SVM入门精品讲解系列之一
SVM入门精品讲解系列之二&之三
SVM入门精品讲解系列之四
SVM入门精品讲解系列之五&六
SVM入门精品讲解系列之七
SVM入门精品讲解系列之八
SVM入门精品讲解系列之九&十
==========SVM视频===============================
【视频】神经网络libsvm-mat-加强工具箱介绍, 最好的SVM教程
http://www.ilovematlab.cn/thread-59483-1-1.html
Matlab 神经网络(八.1):SVM神经网络理论实际应用
Matlab 神经网络(八.2):SVM神经网络理论理论分析
=========SVM其他相关链接=========================
关于libsvm分类结果的可视化及分类曲线的可视化
Binary-class Cross Validation with Different Criteria
利用GA优化SVM参数的一点小探索
libsvm-mat-2.89-3-[farutoFinalVersion+pca]
利用PSO优化SVM参数的一点小探索
Matlab的libsvm-mat faruto版本 Ver2
Matlab利用libsvm做回归分析的一个小例子-by faruto
关于SVM参数c&g选取的总结帖[matlab-libsvm]
Matlab的FIG(信息粒化)+SVM对于上证指数的预测
libsvm的最新版本----libsvm-mat-2.89-3
libsvm更新版本----faruto version
有关Matlab中的SVM的一些问题的讨论[一次邮件往来]
有关SVM和libsvm的非常好的资料,想要详细研究SVM看这个
SVM的多类问题
交叉验证(Cross Validation)方法思想简介
关于libsvm分类结果的可视化及分类曲线的可视化
[framework] libsvmfarutoUltimateVersion3.0]
再论Matlab的libsvm的安装
如何利用LIBSVM-MAT画ROC曲线?
再议归一化问题
=================================================
SVM工具箱快速入手简易教程(by faruto)
最近发现好多朋友有关SVM的工具箱的使用方法相关的东西,其实帮助文件里都有的[无论是matlab自带的还是libsvm都是有帮助文件的而且写的也明确,但还是有朋友问问],无奈我就写一个小简易的上手的教程,事先声明只给菜鸟写的,高手就不要看了,其实帮助文件里都有,你也可以看帮助文件,不用看我的.O(∩_∩)O..
一. matlab 自带的函数(matlab帮助文件里的例子)[只有较新版本的matlab中有这两个SVM的函数]
=====
svmtrain svmclassify
=====简要语法规则====
svmtrain
Train support vector machine classifier
Syntax
SVMStruct = svmtrain(Training, Group)
SVMStruct = svmtrain(..., 'Kernel_Function', Kernel_FunctionValue, ...)
SVMStruct = svmtrain(..., 'RBF_Sigma', RBFSigmaValue, ...)
SVMStruct = svmtrain(..., 'Polyorder', PolyorderValue, ...)
SVMStruct = svmtrain(..., 'Mlp_Params', Mlp_ParamsValue, ...)
SVMStruct = svmtrain(..., 'Method', MethodValue, ...)
SVMStruct = svmtrain(..., 'QuadProg_Opts', QuadProg_OptsValue, ...)
SVMStruct = svmtrain(..., 'SMO_Opts', SMO_OptsValue, ...)
SVMStruct = svmtrain(..., 'BoxConstraint', BoxConstraintValue, ...)
SVMStruct = svmtrain(..., 'Autoscale', AutoscaleValue, ...)
SVMStruct = svmtrain(..., 'Showplot', ShowplotValue, ...)
---------------------
svmclassify
Classify data using support vector machine
Syntax
Group = svmclassify(SVMStruct, Sample)
Group = svmclassify(SVMStruct, Sample, 'Showplot', ShowplotValue)
============================实例研究====================
load fisheriris
%载入matlab自带的数据[有关数据的信息可以自己到UCI查找,这是UCI的经典数据之一],得到的数据如下图:
tu1
[attach]24862[/attach]
其中meas是150*4的矩阵代表着有150个样本每个样本有4个属性描述,species代表着这150个样本的分类.
data = [meas(:,1), meas(:,2)];
%在这里只取meas的第一列和第二列,即只选取前两个属性.
groups = ismember(species,'setosa');
%由于species分类中是有三个分类:setosa,versicolor,virginica,为了使问题简单,我们将其变为二分类问题:Setosa and non-Setosa.
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
%随机选择训练集合测试集[有关crossvalind的使用请自己help一下]
其中cp作用是后来用来评价分类器的.
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
%使用svmtrain进行训练,得到训练后的结构svmStruct,在预测时使用.
训练结果如图:
tu2
[attach]24863[/attach]
classes = svmclassify(svmStruct,data(test,:),'showplot',true);
%对于未知的测试集进行分类预测,结果如图:
tu3
[attach]24864[/attach]
classperf(cp,classes,test);
cp.CorrectRate
ans =
0.9867
%分类器效果测评,就是看测试集分类的准确率的高低.
二.台湾林智仁的libsvm工具箱
该工具箱下载[libsvm-mat-2.86-1]:[attach]24867[/attach]
安装方法也很简单,解压文件,把当前工作目录调整到libsvm所在的文件夹下,再在set path里将libsvm所在的文件夹加到里面.然后
在命令行里输入
mex -setup %选择一下编译器
make
这样就可以了.
建议大家使用libsvm工具箱,这个更好用一些.可以进行分类[多类别],预测....
=========
svmtrain
svmpredict
================
简要语法:
Usage
=====
matlab> model = svmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']);
-training_label_vector:
An m by 1 vector of training labels (type must be double).
-training_instance_matrix:
An m by n matrix of m training instances with n features.
It can be dense or sparse (type must be double).
-libsvm_options:
A string of training options in the same format as that of LIBSVM.
matlab> [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model [, 'libsvm_options']);
-testing_label_vector:
An m by 1 vector of prediction labels. If labels of test
data are unknown, simply use any random values. (type must be double)
-testing_instance_matrix:
An m by n matrix of m testing instances with n features.
It can be dense or sparse. (type must be double)
-model:
The output of svmtrain.
-libsvm_options:
A string of testing options in the same format as that of LIBSVM.
Returned Model Structure
========================
实例研究:
load heart_scale.mat
%工具箱里自带的数据
如图:
tu4
[attach]24873[/attach]
其中 heart_scale_inst是样本,heart_scale_label是样本标签
model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07');
%训练样本,具体参数的调整请看帮助文件
[predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model);
%分类预测,这里把训练集当作测试集,验证效果如下:
>> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training data
Accuracy = 86.6667% (234/270) (classification)
==============
这回把SVM这点入门的东西都说完了,大家可以参照着上手了,有关SVM的原理我下面有个简易的PPT,是以前做项目时我做的[当时我负责有关SVM这一块代码实现讲解什么的],感兴趣的你可以看看,都是上手较快的东西,想要深入学习SVM,你的学习统计学习理论什么的....挺多的呢..
[attach]24876[/attach]
-----------有关SVM和libsvm的非常好的资料,想要详细研究SVM看这个------
[attach]32035[/attach]
[attach]32036[/attach]
[attach]32037[/attach]
[attach]32038[/attach]
其中那个林智仁06年机器学习暑期学校讲义pdf是 matlab@man提供的[http://www.ilovematlab.cn/thread-47506-1-1.html]
图:
[attach]32039[/attach]
[attach]32040[/attach]
[attach]32041[/attach]
[attach]32042[/attach]
- 浏览: 1053549 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (1441)
- 软件思想&演讲 (9)
- 行业常识 (250)
- 时时疑问 (5)
- java/guava/python/php/ruby/R/scala/groovy (213)
- struct/spring/springmvc (37)
- mybatis/hibernate/JPA (10)
- mysql/oracle/sqlserver/db2/mongdb/redis/neo4j/GreenPlum/Teradata/hsqldb/Derby/sakila (268)
- js/jquery/jqueryUi/jqueryEaseyUI/extjs/angulrJs/react/es6/grunt/zepto/raphael (81)
- ZMQ/RabbitMQ/ActiveMQ/JMS/kafka (17)
- lucene/solr/nuth/elasticsearch/MG4J (167)
- html/css/ionic/nodejs/bootstrap (19)
- Linux/shell/centos (56)
- cvs/svn/git/sourceTree/gradle/ant/maven/mantis/docker/Kubernetes (26)
- sonatype nexus (1)
- tomcat/jetty/netty/jboss (9)
- 工具 (17)
- ETL/SPASS/MATLAB/RapidMiner/weka/kettle/DataX/Kylin (11)
- hadoop/spark/Hbase/Hive/pig/Zookeeper/HAWQ/cloudera/Impala/Oozie (190)
- ios/swift/android (9)
- 机器学习&算法&大数据 (18)
- Mesos是Apache下的开源分布式资源管理框架 (1)
- echarts/d3/highCharts/tableau (1)
- 行业技能图谱 (1)
- 大数据可视化 (2)
- tornado/ansible/twisted (2)
- Nagios/Cacti/Zabbix (0)
- eclipse/intellijIDEA/webstorm (5)
- cvs/svn/git/sourceTree/gradle/jira/bitbucket (4)
- jsp/jsf/flex/ZKoss (0)
- 测试技术 (2)
- splunk/flunm (2)
- 高并发/大数据量 (1)
- freemarker/vector/thymeleaf (1)
- docker/Kubernetes (2)
- dubbo/ESB/dubboX/wso2 (2)
最新评论
发表评论
-
DTBoost:全新一代企业级大数据应用模式揭秘
2017-08-29 10:04 915DT时代企业不需要按照 ... -
PageRank算法--从原理到实现
2017-04-17 19:07 1000本文将介绍PageRank算法的相关内容,具体如下: 1. ... -
Geode/Gemfire学习笔记(一)环境搭建、快速上手
2017-01-18 11:05 1069Geode/Gemfire 是Pivotal公 ... -
FusionInsight企业级大数据平台
2017-01-23 13:48 614FusionInsight是华为面向众多行业客户推出的,基 ... -
Madlib库
2017-01-14 16:19 891随着应用数据的增长,在大规模数据集上进行统计分析和机器学习越 ... -
算法使用1
2016-12-23 11:49 439有文本挖掘、时间序列建模、逻辑回归、神经网络、贝叶斯、遗传算法 ... -
SAS 系统全称为Statistics Analysis System
2016-12-23 11:41 505SAS 系统全称为Statistics ... -
MATLAB
2016-12-23 10:51 554MATLAB[1] 是美国MathWorks公司出品的商业 ... -
学习排序(Learning to Rank)
2016-11-29 10:11 1020学习排序(Learning to R ... -
检索模型及评价指标小结
2016-11-29 10:11 549经典检索模型 信息检索模型从它诞生到现在经历了 ... -
城市计算与大数据
2016-11-29 10:15 639<div class="iteye-blo ... -
隐语义模型
2016-11-30 10:47 521隐语义模型LFM和LSI,LDA,Topic Model其 ... -
随机森林和GBDT的学习
2016-11-30 10:47 756前言 提到森林,就不得不联想到树,因为正是一棵棵的树构成 ... -
时间序列预测法
2016-12-01 10:43 1303什么是时间序列预测法? 一种历史资料延伸预测,也称历 ... -
8大经典数据挖掘算法
2016-11-28 10:48 434大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行 ... -
大数据的发展
2016-09-11 00:53 421近几年,大数据这个 ... -
机器学习算法一览,应用建议与解决思路
2016-09-11 00:54 765机器学习算法简述 ...
相关推荐
"LIBSVM 超级详细入门经典" 以下是对 LIBSVM 的详细入门经典,涵盖 SVM 的基本概念、原理和算法。 1. 支持向量机(Support Vector Machine,SVM) SVM 是一种机器学习算法,由 Cortes 和 Vapnik 于 1995 年提出。...
LibSVM,全称为“Library for Support Vector Machines”,是由台湾大学的Chih-Chung Chang和Chih-Jen Lin开发的一款开源软件,主要用于支持向量机(SVM)的学习与预测。这款工具广泛应用于分类、回归以及异常检测等...
LibSVM,全称为“Library for Support Vector Machines”,是由台湾大学林智仁教授开发的一款开源软件,用于支持向量机(Support Vector Machine, SVM)的训练和预测。这个工具包支持多种编程语言,包括C、Java、...
**总结** libsvm是支持向量机的重要实现工具,其提供的`libsvm-weights-2.91`版本包含了预先训练好的权重,方便快速应用到相似任务上。SVM作为一种强大的机器学习算法,广泛应用于各种领域,如文本分类、图像识别、...
总结来说,这个压缩包提供了一个在Windows环境下使用LibSVM的全套示例,包括训练、预测、数据预处理以及一些示例数据和概念图。通过这些工具和数据,用户可以更好地理解和实践SVM在实际问题中的应用。
标题 "WEKA运行libsvm的libsvm.jar" 描述了一个在数据挖掘领域常见的操作,即如何在WEKA环境中使用libsvm库。这个过程涉及到两个关键组件:WEKA和libsvm,以及它们之间的集成方法。 首先,WEKA(Waikato ...
MATLAB自带的svm实现函数仅有的模型是C-SVC(C-support vector classification); 而libsvm工具箱有C-SVC(C-support vector classification)
**libSVM简介** libSVM(Library for Support Vector Machines)是由台湾大学的Chih-Chung Chang和Chih-Jen Lin开发的一个强大的机器学习库,主要用于支持向量机(SVM)的训练和预测。libSVM是开源的,可以在各种...
3.14版是LibSVM的一个经典版本,对于某些MATLAB用户来说,可能在处理特定问题时,3.14版的表现会优于更新的3.22版。 **支持向量机(SVM)基本概念** 1. **支持向量**:SVM的核心思想是在数据集中找到一个最优的...
LibSVM,全称为“Library for Support Vector Machines”,是由台湾大学林智仁教授开发的一款开源软件,主要用于支持向量机(SVM)的学习与应用。它提供了多种编程语言的接口,包括Java、Python、MATLAB等。在这个...
总结,"libsvm3.1最新版本"是一个全面的SVM工具包,适用于各种开发环境,包括C、Java和MATLAB。它提供了训练、预测、参数调优等功能,是机器学习领域的重要工具,尤其在分类和回归任务中展现出强大的性能。
LibSVM,全称为“Library for Support Vector Machines”,是由陈嘉澍教授及其团队开发的一款开源的、用于支持向量机(SVM)的库。它提供了丰富的数据结构和算法,适用于各种分类和回归任务,是机器学习领域广泛使用...
**LibSVM与SVM简介** LibSVM(Library for Support Vector Machines)是由台湾大学林智仁教授及其团队开发的一款开源软件,它提供了强大的支持向量机(SVM)算法实现。SVM是一种监督学习模型,广泛应用于分类和回归...
LIBSVM是由台湾大学林智仁(Chih-Jen Lin)博士等人开发的一款高效、易用且功能全面的支持向量机(Support Vector Machine, SVM)软件包。这款软件能够解决多种类型的机器学习问题,包括但不限于分类问题(如C-Support...
标题“libsvm”指的是LIBSVM(Library for Support Vector Machines),这是一个开源的机器学习库,主要专注于支持向量机(SVM)算法。SVM是一种监督学习模型,广泛应用于分类和回归问题,尤其是在处理高维数据时...
在libsvm-3.16的python文件夹下主要包括了两个文件svm.py和svmutil.py。 svmutil.py接口主要包括了high-level的函数,这些函数的使用和LIBSVM的MATLAB接口大体类似 svmutil中主要包含了以下几个函数: svm_train...
标题"libsvm的java文件"指的是一个使用Java编写的库,用于与LibSVM(Library for Support Vector Machines)交互。LibSVM是一个广泛使用的开源工具,主要用于支持向量机(SVM)的学习和预测,特别是在机器学习和数据...
LIBSVM,全称为“Library for Support Vector Machines”,是由台湾大学的Chih-Chung Chang和Chih-Jen Lin开发的一款开源软件,主要用于支持向量机(SVM)的建模和训练。SVM是一种强大的监督学习算法,广泛应用于...
总结,LibSVM是一个强大且灵活的SVM工具,其在MATLAB中的应用进一步简化了模型构建过程,尤其适合科研和工程实践中的数据挖掘与机器学习任务。正确理解和运用LibSVM,能够提升模型的构建效率和预测精度。
matlab使用libsvm进行分类代码实例, 这里包括一个数据集合, 一个代码(包括详细注释),而且代码经过修改,已经符合最新的libsvm调用格式,不会出错,用于SVM分类。 首先通过博客,安装好libsvm库,博客地址:...