`
weitao1026
  • 浏览: 1055771 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

Pig里面内置大量的工具函数

pig 
阅读更多

Pig里面内置大量的工具函数,也开放了大量的接口,来给我们开发者使用,通过UDF,我们可以非常方便的完成某些Pig不直接支持或没有的的功能,比如散仙前面几篇文章写的将pig分析完的结果,存储到各种各样的介质里面,而不仅仅局限于HDFS,当然,我们也可以在都存。

那么如何实现自己的存储UDF呢? 提到这里,我们不得不说下pig里面的load和store函数,load函数是从某个数据源,加载数据,一般都是从HDFS上加载,而store函数则是将分析完的结果,存储到HDFS用的,所以,我们只需继承重写store的功能函数StoreFunc即可完成我们的大部分需求,懂的了这个,我们就可以将结果任意存储了,可以存到数据库,也可以存到索引文件,也可以存入本地txt,excel等等

下面先看下StoreFunc的源码:

Java代码 复制代码 收藏代码
  1. /* 
  2.  * Licensed to the Apache Software Foundation (ASF) under one 
  3.  * or more contributor license agreements.  See the NOTICE file 
  4.  * distributed with this work for additional information 
  5.  * regarding copyright ownership.  The ASF licenses this file 
  6.  * to you under the Apache License, Version 2.0 (the 
  7.  * "License"); you may not use this file except in compliance 
  8.  * with the License.  You may obtain a copy of the License at 
  9.  * 
  10.  *     http://www.apache.org/licenses/LICENSE-2.0 
  11.  * 
  12.  * Unless required by applicable law or agreed to in writing, software 
  13.  * distributed under the License is distributed on an "AS IS" BASIS, 
  14.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
  15.  * See the License for the specific language governing permissions and 
  16.  * limitations under the License. 
  17.  */  
  18. package org.apache.pig;  
  19.   
  20. import java.io.IOException;  
  1. import org.apache.hadoop.fs.FileSystem;  
  2. import org.apache.hadoop.fs.Path;  
  3. import org.apache.hadoop.mapreduce.Counter;  
  4. import org.apache.hadoop.mapreduce.Job;  
  5. import org.apache.hadoop.mapreduce.OutputFormat;  
  6. import org.apache.hadoop.mapreduce.RecordWriter;  
  7.   
  8. import org.apache.pig.classification.InterfaceAudience;  
  9. import org.apache.pig.classification.InterfaceStability;  
  10. import org.apache.pig.data.Tuple;  
  11. import org.apache.pig.impl.util.UDFContext;  
  12. import org.apache.pig.tools.pigstats.PigStatusReporter;  
  13.   
  14.   
  15. /** 
  16. * StoreFuncs take records from Pig's processing and store them into a data store.  Most frequently 
  17. * this is an HDFS file, but it could also be an HBase instance, RDBMS, etc. 
  18. */  
  19. @InterfaceAudience.Public  
  20. @InterfaceStability.Stable  
  21. public abstract class StoreFunc implements StoreFuncInterface {  
  22.   
  23.     /** 
  24.      * This method is called by the Pig runtime in the front end to convert the 
  25.      * output location to an absolute path if the location is relative. The 
  26.      * StoreFunc implementation is free to choose how it converts a relative  
  27.      * location to an absolute location since this may depend on what the location 
  28.      * string represent (hdfs path or some other data source).  
  29.      *   
  30.      *  
  31.      * @param location location as provided in the "store" statement of the script 
  32.      * @param curDir the current working direction based on any "cd" statements 
  33.      * in the script before the "store" statement. If there are no "cd" statements 
  34.      * in the script, this would be the home directory -  
  35.      * <pre>/user/<username> </pre> 
  36.      * @return the absolute location based on the arguments passed 
  37.      * @throws IOException if the conversion is not possible 
  38.      */  
  39.     @Override  
  40.     public String relToAbsPathForStoreLocation(String location, Path curDir)   
  41.     throws IOException {  
  42.         return LoadFunc.getAbsolutePath(location, curDir);  
  43.     }  
  44.   
  45.     /** 
  46.      * Return the OutputFormat associated with StoreFunc.  This will be called 
  47.      * on the front end during planning and on the backend during 
  48.      * execution.  
  49.      * @return the {@link OutputFormat} associated with StoreFunc 
  50.      * @throws IOException if an exception occurs while constructing the  
  51.      * OutputFormat 
  52.      * 
  53.      */  
  54.     public abstract OutputFormat getOutputFormat() throws IOException;  
  55.   
  56.     /** 
  57.      * Communicate to the storer the location where the data needs to be stored.   
  58.      * The location string passed to the {@link StoreFunc} here is the  
  59.      * return value of {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}  
  60.      * This method will be called in the frontend and backend multiple times. Implementations 
  61.      * should bear in mind that this method is called multiple times and should 
  62.      * ensure there are no inconsistent side effects due to the multiple calls. 
  63.      * {@link #checkSchema(ResourceSchema)} will be called before any call to 
  64.      * {@link #setStoreLocation(String, Job)}. 
  65.      *  
  66.  
  67.      * @param location Location returned by  
  68.      * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} 
  69.      * @param job The {@link Job} object 
  70.      * @throws IOException if the location is not valid. 
  71.      */  
  72.     public abstract void setStoreLocation(String location, Job job) throws IOException;  
  73.    
  74.     /** 
  75.      * Set the schema for data to be stored.  This will be called on the 
  76.      * front end during planning if the store is associated with a schema. 
  77.      * A Store function should implement this function to 
  78.      * check that a given schema is acceptable to it.  For example, it 
  79.      * can check that the correct partition keys are included; 
  80.      * a storage function to be written directly to an OutputFormat can 
  81.      * make sure the schema will translate in a well defined way.  Default implementation 
  82.      * is a no-op. 
  83.      * @param s to be checked 
  84.      * @throws IOException if this schema is not acceptable.  It should include 
  85.      * a detailed error message indicating what is wrong with the schema. 
  86.      */  
  87.     @Override  
  88.     public void checkSchema(ResourceSchema s) throws IOException {  
  89.         // default implementation is a no-op  
  90.     }  
  91.   
  92.     /** 
  93.      * Initialize StoreFunc to write data.  This will be called during 
  94.      * execution on the backend before the call to putNext. 
  95.      * @param writer RecordWriter to use. 
  96.      * @throws IOException if an exception occurs during initialization 
  97.      */  
  98.     public abstract void prepareToWrite(RecordWriter writer) throws IOException;  
  99.   
  100.     /** 
  101.      * Write a tuple to the data store. 
  102.      *  
  103.      * @param t the tuple to store. 
  104.      * @throws IOException if an exception occurs during the write 
  105.      */  
  106.     public abstract void putNext(Tuple t) throws IOException;  
  107.       
  108.     /** 
  109.      * This method will be called by Pig both in the front end and back end to 
  110.      * pass a unique signature to the {@link StoreFunc} which it can use to store 
  111.      * information in the {@link UDFContext} which it needs to store between 
  112.      * various method invocations in the front end and back end. This method  
  113.      * will be called before other methods in {@link StoreFunc}.  This is necessary 
  114.      * because in a Pig Latin script with multiple stores, the different 
  115.      * instances of store functions need to be able to find their (and only their) 
  116.      * data in the UDFContext object.  The default implementation is a no-op. 
  117.      * @param signature a unique signature to identify this StoreFunc 
  118.      */  
  119.     @Override  
  120.     public void setStoreFuncUDFContextSignature(String signature) {  
  121.         // default implementation is a no-op  
  122.     }  
  123.       
  124.     /** 
  125.      * This method will be called by Pig if the job which contains this store 
  126.      * fails. Implementations can clean up output locations in this method to 
  127.      * ensure that no incorrect/incomplete results are left in the output location. 
  128.      * The default implementation  deletes the output location if it 
  129.      * is a {@link FileSystem} location. 
  130.      * @param location Location returned by  
  131.      * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} 
  132.      * @param job The {@link Job} object - this should be used only to obtain  
  133.      * cluster properties through {@link Job#getConfiguration()} and not to set/query 
  134.      * any runtime job information.  
  135.      */  
  136.     @Override  
  137.     public void cleanupOnFailure(String location, Job job)   
  138.     throws IOException {  
  139.         cleanupOnFailureImpl(location, job);  
  140.     }  
  141.   
  142.     /** 
  143.      * This method will be called by Pig if the job which contains this store 
  144.      * is successful, and some cleanup of intermediate resources is required. 
  145.      * Implementations can clean up output locations in this method to 
  146.      * ensure that no incorrect/incomplete results are left in the output location. 
  147.      * @param location Location returned by  
  148.      * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} 
  149.      * @param job The {@link Job} object - this should be used only to obtain  
  150.      * cluster properties through {@link Job#getConfiguration()} and not to set/query 
  151.      * any runtime job information.  
  152.      */  
  153.     @Override  
  154.     public void cleanupOnSuccess(String location, Job job)   
  155.     throws IOException {  
  156.         // DEFAULT: DO NOTHING, user-defined overrides can  
  157.         // call cleanupOnFailureImpl(location, job) or ...?  
  158.     }  
  159.       
  160.     /** 
  161.      * Default implementation for {@link #cleanupOnFailure(String, Job)} 
  162.      * and {@link #cleanupOnSuccess(String, Job)}.  This removes a file 
  163.      * from HDFS. 
  164.      * @param location file name (or URI) of file to remove 
  165.      * @param job Hadoop job, used to access the appropriate file system. 
  166.      * @throws IOException 
  167.      */  
  168.     public static void cleanupOnFailureImpl(String location, Job job)   
  169.     throws IOException {          
  170.         Path path = new Path(location);  
  171.         FileSystem fs = path.getFileSystem(job.getConfiguration());  
  172.         if(fs.exists(path)){  
  173.             fs.delete(path, true);  
  174.         }      
  175.     }  
  176.       
  177.     /** 
  178.      * Issue a warning.  Warning messages are aggregated and reported to 
  179.      * the user. 
  180.      * @param msg String message of the warning 
  181.      * @param warningEnum type of warning 
  182.      */  
  183.     public final void warn(String msg, Enum warningEnum) {  
  184.         Counter counter = PigStatusReporter.getInstance().getCounter(warningEnum);  
  185.         counter.increment(1);  
  186.     }  
  187. }  
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.pig;

import java.io.IOException;

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.RecordWriter;

import org.apache.pig.classification.InterfaceAudience;
import org.apache.pig.classification.InterfaceStability;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.util.UDFContext;
import org.apache.pig.tools.pigstats.PigStatusReporter;


/**
* StoreFuncs take records from Pig's processing and store them into a data store.  Most frequently
* this is an HDFS file, but it could also be an HBase instance, RDBMS, etc.
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public abstract class StoreFunc implements StoreFuncInterface {

    /**
     * This method is called by the Pig runtime in the front end to convert the
     * output location to an absolute path if the location is relative. The
     * StoreFunc implementation is free to choose how it converts a relative 
     * location to an absolute location since this may depend on what the location
     * string represent (hdfs path or some other data source). 
     *  
     * 
     * @param location location as provided in the "store" statement of the script
     * @param curDir the current working direction based on any "cd" statements
     * in the script before the "store" statement. If there are no "cd" statements
     * in the script, this would be the home directory - 
     * <pre>/user/<username> </pre>
     * @return the absolute location based on the arguments passed
     * @throws IOException if the conversion is not possible
     */
    @Override
    public String relToAbsPathForStoreLocation(String location, Path curDir) 
    throws IOException {
        return LoadFunc.getAbsolutePath(location, curDir);
    }

    /**
     * Return the OutputFormat associated with StoreFunc.  This will be called
     * on the front end during planning and on the backend during
     * execution. 
     * @return the {@link OutputFormat} associated with StoreFunc
     * @throws IOException if an exception occurs while constructing the 
     * OutputFormat
     *
     */
    public abstract OutputFormat getOutputFormat() throws IOException;

    /**
     * Communicate to the storer the location where the data needs to be stored.  
     * The location string passed to the {@link StoreFunc} here is the 
     * return value of {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)} 
     * This method will be called in the frontend and backend multiple times. Implementations
     * should bear in mind that this method is called multiple times and should
     * ensure there are no inconsistent side effects due to the multiple calls.
     * {@link #checkSchema(ResourceSchema)} will be called before any call to
     * {@link #setStoreLocation(String, Job)}.
     * 

     * @param location Location returned by 
     * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
     * @param job The {@link Job} object
     * @throws IOException if the location is not valid.
     */
    public abstract void setStoreLocation(String location, Job job) throws IOException;
 
    /**
     * Set the schema for data to be stored.  This will be called on the
     * front end during planning if the store is associated with a schema.
     * A Store function should implement this function to
     * check that a given schema is acceptable to it.  For example, it
     * can check that the correct partition keys are included;
     * a storage function to be written directly to an OutputFormat can
     * make sure the schema will translate in a well defined way.  Default implementation
     * is a no-op.
     * @param s to be checked
     * @throws IOException if this schema is not acceptable.  It should include
     * a detailed error message indicating what is wrong with the schema.
     */
    @Override
    public void checkSchema(ResourceSchema s) throws IOException {
        // default implementation is a no-op
    }

    /**
     * Initialize StoreFunc to write data.  This will be called during
     * execution on the backend before the call to putNext.
     * @param writer RecordWriter to use.
     * @throws IOException if an exception occurs during initialization
     */
    public abstract void prepareToWrite(RecordWriter writer) throws IOException;

    /**
     * Write a tuple to the data store.
     * 
     * @param t the tuple to store.
     * @throws IOException if an exception occurs during the write
     */
    public abstract void putNext(Tuple t) throws IOException;
    
    /**
     * This method will be called by Pig both in the front end and back end to
     * pass a unique signature to the {@link StoreFunc} which it can use to store
     * information in the {@link UDFContext} which it needs to store between
     * various method invocations in the front end and back end. This method 
     * will be called before other methods in {@link StoreFunc}.  This is necessary
     * because in a Pig Latin script with multiple stores, the different
     * instances of store functions need to be able to find their (and only their)
     * data in the UDFContext object.  The default implementation is a no-op.
     * @param signature a unique signature to identify this StoreFunc
     */
    @Override
    public void setStoreFuncUDFContextSignature(String signature) {
        // default implementation is a no-op
    }
    
    /**
     * This method will be called by Pig if the job which contains this store
     * fails. Implementations can clean up output locations in this method to
     * ensure that no incorrect/incomplete results are left in the output location.
     * The default implementation  deletes the output location if it
     * is a {@link FileSystem} location.
     * @param location Location returned by 
     * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
     * @param job The {@link Job} object - this should be used only to obtain 
     * cluster properties through {@link Job#getConfiguration()} and not to set/query
     * any runtime job information. 
     */
    @Override
    public void cleanupOnFailure(String location, Job job) 
    throws IOException {
        cleanupOnFailureImpl(location, job);
    }

    /**
     * This method will be called by Pig if the job which contains this store
     * is successful, and some cleanup of intermediate resources is required.
     * Implementations can clean up output locations in this method to
     * ensure that no incorrect/incomplete results are left in the output location.
     * @param location Location returned by 
     * {@link StoreFunc#relToAbsPathForStoreLocation(String, Path)}
     * @param job The {@link Job} object - this should be used only to obtain 
     * cluster properties through {@link Job#getConfiguration()} and not to set/query
     * any runtime job information. 
     */
    @Override
    public void cleanupOnSuccess(String location, Job job) 
    throws IOException {
        // DEFAULT: DO NOTHING, user-defined overrides can
        // call cleanupOnFailureImpl(location, job) or ...?
    }
    
    /**
     * Default implementation for {@link #cleanupOnFailure(String, Job)}
     * and {@link #cleanupOnSuccess(String, Job)}.  This removes a file
     * from HDFS.
     * @param location file name (or URI) of file to remove
     * @param job Hadoop job, used to access the appropriate file system.
     * @throws IOException
     */
    public static void cleanupOnFailureImpl(String location, Job job) 
    throws IOException {        
        Path path = new Path(location);
        FileSystem fs = path.getFileSystem(job.getConfiguration());
        if(fs.exists(path)){
            fs.delete(path, true);
        }    
    }
    
    /**
     * Issue a warning.  Warning messages are aggregated and reported to
     * the user.
     * @param msg String message of the warning
     * @param warningEnum type of warning
     */
    public final void warn(String msg, Enum warningEnum) {
        Counter counter = PigStatusReporter.getInstance().getCounter(warningEnum);
        counter.increment(1);
    }
}




这里面有许多方法,但并不都需要我们重新定义的,一般来说,我们只需要重写如下的几个抽象方法即可:

(1)getOutputFormat方法,与Hadoop的OutFormat对应,在最终的输出时,会根据不同的format方法,生成不同的形式。
(2)setStoreLocation方法,这个方法定义了生成文件的路径,如果不是存入HDFS上,则可以忽略。
(3)prepareToWrite 在写入数据之前做一些初始化工作
(4)putNext从Pig里面传递过来最终需要存储的数据




在1的步骤我们知道,需要提供一个outputFormat的类,这时就需要我们继承hadoop里面的某个outputformat基类,然后重写getRecordWriter方法,接下来我们还可能要继承RecordWriter类,来定义我们自己的输出格式,可能是一行txt数据,也有可能是一个对象,或一个索引集合等等,如下面支持lucene索引的outputformat

Java代码 复制代码 收藏代码
  1. package com.pig.support.lucene;  
  2.   
  3.   
  4.   
  5. import java.io.File;  
  6. import java.io.IOException;  
  7. import java.util.concurrent.atomic.AtomicInteger;  
  8.   
  9. import org.apache.hadoop.conf.Configuration;  
  10. import org.apache.hadoop.fs.FileSystem;  
  11. import org.apache.hadoop.fs.FileUtil;  
  12. import org.apache.hadoop.fs.Path;  
  13. import org.apache.hadoop.io.Writable;  
  14. import org.apache.hadoop.mapreduce.RecordWriter;  
  15. import org.apache.hadoop.mapreduce.TaskAttemptContext;  
  16. import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;  
  17. import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
  18. import org.apache.lucene.analysis.standard.StandardAnalyzer;  
  19. import org.apache.lucene.document.Document;  
  20. import org.apache.lucene.index.IndexWriter;  
  21. import org.apache.lucene.index.IndexWriterConfig;  
  22. import org.apache.lucene.index.LogByteSizeMergePolicy;  
  23. import org.apache.lucene.index.SerialMergeScheduler;  
  24. import org.apache.lucene.store.FSDirectory;  
  25. import org.apache.lucene.util.Version;  
  26.   
  27. /** 
  28.  * 继承FileOutputFormat,重写支持Lucene格式的outputFormat策略 
  29.  * */  
  30. public class LuceneOutputFormat extends FileOutputFormat<Writable, Document> {  
  31.   
  32.     String location;  
  33.     FileSystem fs;  
  34.     String taskid;  
  35.   
  36.     FileOutputCommitter committer;  
  37.     AtomicInteger counter = new AtomicInteger();  
  38.   
  39.     public LuceneOutputFormat(String location) {  
  40.         this.location = location;  
  41.     }  
  42.       
  43.     @Override  
  44.     public RecordWriter<Writable, Document> getRecordWriter(  
  45.             TaskAttemptContext ctx) throws IOException, InterruptedException {  
  46.   
  47.         Configuration conf = ctx.getConfiguration();  
  48.         fs = FileSystem.get(conf);  
  49.   
  50.         File baseDir = new File(System.getProperty("java.io.tmpdir"));  
  51.         String baseName = System.currentTimeMillis() + "-";  
  52.         File tempDir = new File(baseDir, baseName + counter.getAndIncrement());  
  53.         tempDir.mkdirs();  
  54.         tempDir.deleteOnExit();  
  55.   
  56.         return new LuceneRecordWriter(  
  57.                 (FileOutputCommitter) getOutputCommitter(ctx), tempDir);  
  58.     }  
  59.   
  60.     /** 
  61.      * Write out the LuceneIndex to a local temporary location.<br/> 
  62.      * On commit/close the index is copied to the hdfs output directory.<br/> 
  63.      * 
  64.      */  
  65.     static class LuceneRecordWriter extends RecordWriter<Writable, Document> {  
  66.   
  67.         final IndexWriter writer;  
  68.         final FileOutputCommitter committer;  
  69.         final File tmpdir;  
  70.   
  71.         public LuceneRecordWriter(FileOutputCommitter committer, File tmpdir) {  
  72.             try {  
  73.                 this.committer = committer;  
  74.                 this.tmpdir = tmpdir;  
  75.                 IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_4_10_2,  
  76.                         new StandardAnalyzer());  
  77.                 LogByteSizeMergePolicy mergePolicy = new LogByteSizeMergePolicy();  
  78.                 mergePolicy.setMergeFactor(10);  
  79.                 //mergePolicy.setUseCompoundFile(false);  
  80.                 config.setMergePolicy(mergePolicy);  
  81.                 config.setMergeScheduler(new SerialMergeScheduler());  
  82.   
  83.                 writer = new IndexWriter(FSDirectory.open(tmpdir),  
  84.                         config);  
  85.                   
  86.             } catch (IOException e) {  
  87.                 RuntimeException exc = new RuntimeException(e.toString(), e);  
  88.                 exc.setStackTrace(e.getStackTrace());  
  89.                 throw exc;  
  90.             }  
  91.         }  
  92.   
  93.         @Override  
  94.         public void close(final TaskAttemptContext ctx) throws IOException,  
  95.                 InterruptedException {  
  96.             //use a thread for status polling  
  97.             final Thread th = new Thread() {  
  98.                 public void run() {  
  99.                     ctx.progress();  
  100.                     try {  
  101.                         Thread.sleep(500);  
  102.                     } catch (InterruptedException e) {  
  103.                         Thread.currentThread().interrupt();  
  104.                         return;  
  105.                     }  
  106.                 }  
  107.             };  
  108.             th.start();  
  109.             try {  
  110.                 writer.forceMerge(1);  
  111.                 writer.close();  
  112.                 // move all files to part  
  113.                 Configuration conf = ctx.getConfiguration();  
  114.   
  115.                 Path work = committer.getWorkPath();  
  116.                 Path output = new Path(work, "index-"  
  117.                         + ctx.getTaskAttemptID().getTaskID().getId());  
  118.                 FileSystem fs = FileSystem.get(conf);  
  119.   
  120.                 FileUtil.copy(tmpdir, fs, output, true, conf);  
  121.             } finally {  
  122.                 th.interrupt();  
  123.             }  
  124.         }  
  125.   
  126.         @Override  
  127.         public void write(Writable key, Document doc) throws IOException,  
  128.                 InterruptedException {  
  129.             writer.addDocument(doc);  
  130.   
  131.         }  
  132.   
  133.     }  
  134. }  
package com.pig.support.lucene;



import java.io.File;
import java.io.IOException;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileUtil;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.LogByteSizeMergePolicy;
import org.apache.lucene.index.SerialMergeScheduler;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;

/**
 * 继承FileOutputFormat,重写支持Lucene格式的outputFormat策略
 * */
public class LuceneOutputFormat extends FileOutputFormat<Writable, Document> {

	String location;
	FileSystem fs;
	String taskid;

	FileOutputCommitter committer;
	AtomicInteger counter = new AtomicInteger();

	public LuceneOutputFormat(String location) {
		this.location = location;
	}
	
	@Override
	public RecordWriter<Writable, Document> getRecordWriter(
			TaskAttemptContext ctx) throws IOException, InterruptedException {

		Configuration conf = ctx.getConfiguration();
		fs = FileSystem.get(conf);

		File baseDir = new File(System.getProperty("java.io.tmpdir"));
		String baseName = System.currentTimeMillis() + "-";
		File tempDir = new File(baseDir, baseName + counter.getAndIncrement());
		tempDir.mkdirs();
		tempDir.deleteOnExit();

		return new LuceneRecordWriter(
				(FileOutputCommitter) getOutputCommitter(ctx), tempDir);
	}

	/**
	 * Write out the LuceneIndex to a local temporary location.<br/>
	 * On commit/close the index is copied to the hdfs output directory.<br/>
	 *
	 */
	static class LuceneRecordWriter extends RecordWriter<Writable, Document> {

		final IndexWriter writer;
		final FileOutputCommitter committer;
		final File tmpdir;

		public LuceneRecordWriter(FileOutputCommitter committer, File tmpdir) {
			try {
				this.committer = committer;
				this.tmpdir = tmpdir;
				IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_4_10_2,
						new StandardAnalyzer());
				LogByteSizeMergePolicy mergePolicy = new LogByteSizeMergePolicy();
			    mergePolicy.setMergeFactor(10);
			    //mergePolicy.setUseCompoundFile(false);
			    config.setMergePolicy(mergePolicy);
			    config.setMergeScheduler(new SerialMergeScheduler());

				writer = new IndexWriter(FSDirectory.open(tmpdir),
						config);
				
			} catch (IOException e) {
				RuntimeException exc = new RuntimeException(e.toString(), e);
				exc.setStackTrace(e.getStackTrace());
				throw exc;
			}
		}

		@Override
		public void close(final TaskAttemptContext ctx) throws IOException,
				InterruptedException {
			//use a thread for status polling
			final Thread th = new Thread() {
				public void run() {
					ctx.progress();
					try {
						Thread.sleep(500);
					} catch (InterruptedException e) {
						Thread.currentThread().interrupt();
						return;
					}
				}
			};
			th.start();
			try {
				writer.forceMerge(1);
				writer.close();
				// move all files to part
				Configuration conf = ctx.getConfiguration();

				Path work = committer.getWorkPath();
				Path output = new Path(work, "index-"
						+ ctx.getTaskAttemptID().getTaskID().getId());
				FileSystem fs = FileSystem.get(conf);

				FileUtil.copy(tmpdir, fs, output, true, conf);
			} finally {
				th.interrupt();
			}
		}

		@Override
		public void write(Writable key, Document doc) throws IOException,
				InterruptedException {
			writer.addDocument(doc);

		}

	}
}




最后总结一下,自定义输入格式的步骤:

(1)继承StoreFunc函数,重写其方法
(2)继承一个outputformat基类,重写自己的outputformat类
(2)继承一个RecodeWriter,重写自己的writer方法


当然这并不都是必须的,比如在向数据库存储的时候,我们就可以直接在putNext的时候,获取,保存为集合,然后在OutputCommitter提交成功之后,commit我们的数据,如果保存失败,我们也可以在abort方法里回滚我们的数据。

分享到:
评论

相关推荐

    pig-0.7.0.tar.gz

    3. **UDF(用户定义函数)扩展**:0.7.0版本提供了更多的内置UDF,同时也支持用户自定义UDF,这极大地增强了Pig的功能性和灵活性。用户可以通过编写Java代码或使用其他语言(如Python或JavaScript)来扩展Pig的功能...

    Pig Latin: A Not-So-Foreign Language for Data Processing

    - **编译器支持**:Pig系统内置了一个强大的编译器,能够将Pig Latin脚本编译成物理执行计划,最终在Hadoop平台上运行。这使得用户无需深入了解底层Map-Reduce框架的具体细节即可完成数据处理任务。 - **调试环境**...

    基于hadoop平台的pig语言对apache日志系统的分析

    3. 数据转换:通过Pig的内置函数或自定义函数,可以提取出日志中的特定字段,如IP地址、时间戳、请求类型等,进行进一步分析。 4. 数据分析:利用Pig的`GROUP BY`、`COUNT`、`AVG`等聚合操作,可以计算不同IP的请求...

    Hadoop、HBase、Hive、Pig、Zookeeper资料整理

    - **hive函数大全.doc**:这可能是一份详细列出Hive支持的各种内置函数的参考手册,帮助用户在编写HQL时查找和使用各种函数。 - **hive_installation and load data.doc**:这份文档可能介绍了如何安装Hive以及如何...

    pdi-bridge:一个项目,允许您轻松地将 Pentaho Data Integration 集成到您的应用程序中。 适用于 Pig UDF、Spark 函数等

    用户定义的函数(UDF)是Pig Latin中的一个重要组成部分,允许开发者自定义处理逻辑,以处理Pig无法内置处理的复杂数据转换或业务规则。PDI Bridge使得PDI的转换和步骤可以作为Pig的UDF使用,从而扩展了Pig的数据...

    基于PigLatin语言的海量数据分析

    - **内置函数丰富**:提供了丰富的内置函数,支持常见的数据处理操作,如过滤、排序、分组等。 - **易于扩展**:用户可以定义自己的函数,以便处理特定的数据处理需求。 - **核心组件**: - **PigScript**:...

    源码统计工具.zip

    8. **效率优化**:为了提高统计速度,工具可能采用了多线程或异步处理技术,同时处理多个文件,尤其在处理大量源代码时,性能优化至关重要。 9. **兼容性**:由于提到可以运行在Windows系统上,工具可能使用了跨...

    dataview.zip

    5. 分析工具:可能包含内置的统计函数或机器学习算法,用于初步分析数据。 为了更好地利用"dataview",我们需要了解其具体用法、支持的文件格式以及如何与Hadoop集群集成。如果它是一个自定义开发的解决方案,可能...

    大数据系列-Hive入门与实战.pptx

    * 内置大量用户函数 UDF 来操作时间、字符串和其他的数据挖掘工具,支持用户扩展 UDF 函数来完成内置函数无法实现的操作 * 类 SQL 的查询方式,将 SQL 查询转换为 MapReduce 的 job 在 Hadoop 集群上执行 * 编码跟 ...

    大数据名词解析.pdf

    Pig内置了许多函数和操作命令,通过这些程序语句对数据流进行处理。 HBase HBase是一个基于云计算的大数据处理架构中的数据存储层组件。HBase可以存储大量的数据,并提供高并发的读写操作。 索引 索引是对数据库表...

    Hive权威指南

    4. **数据类型和函数**:介绍Hive支持的各种数据类型,以及丰富的内置函数,如统计函数、日期函数、字符串处理函数等。 5. **数据加载与导出**:讲解如何将数据导入Hive表,以及将查询结果导出到其他系统或文件格式...

    Hadoop 权威指南(中文前三章)

    - **UDF**: 用户可以定义自己的函数来扩展Pig的功能。 **11.6 数据处理操作符** - **操作符**: 介绍了Pig中可用的数据处理操作符。 **11.7 Pig实践提示与技巧** - **实用建议**: 提供了一些Pig使用的实践建议和...

    第12章 Hive1

    - Hive查询可以被Hue、Pig、MapReduce、Presto等其他Hadoop工具集成使用。 【应用场景】 - 大规模数据仓库:用于数据挖掘、报表生成和业务分析。 - 实时数据分析:虽然执行速度较慢,但在批处理场景下仍能满足需求...

    Hive调优全方位指南.docx

    12. **利用Hive内置函数**:合理使用Hive提供的内置函数可以简化查询语句并提高执行效率。 #### 六、Hive面试题(一) 1. **Hive是什么?** - Hive是一个建立在Hadoop之上的数据仓库工具,提供SQL-like的查询语言...

    hive-1.1.0-cdh5.7.0.tar.gz免费下载

    6. UDF(User Defined Functions)和UDAF(User Defined Aggregate Functions):Hive提供丰富的内置函数,同时用户可以自定义函数,扩展其功能。 7. Hive-on-MR和Hive-on-Spark:Hive 1.1.0支持在MapReduce和Spark...

    Hadoop硬实战 [(美)霍姆斯著][电子工业出版社][2015.01]_PDF电子书下载 带书签目录 高清完整版.rar )

    前言 致谢 关于本书 第1 部分 背景和基本原理 1 跳跃中的Hadoop 1.1 什么是Hadoop ...附录B Hadoop 内置的数据导入导出工具 附录C HDFS 解剖. 附录D 优化MapReduce 合并框架 索引 收起全部↑

    Hadoop实战中文版

    - **概念介绍**:Pig是一种数据分析工具,提供了一个高层数据流语言(Pig Latin),简化了Hadoop MapReduce程序的编写。 - **特点**: - 易用性:通过Pig Latin语言,用户无需深入理解MapReduce即可完成复杂的分析...

    最新《Hadoop实战》

    除了HDFS和MapReduce之外,Hadoop生态体系还包含了一系列其他的工具和技术,如Hive、Pig、HBase、ZooKeeper、Spark等,它们共同构成了一个强大的大数据处理平台。例如: - **Hive**:是一个数据仓库工具,用于进行...

Global site tag (gtag.js) - Google Analytics