- 浏览: 1048307 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (1441)
- 软件思想&演讲 (9)
- 行业常识 (250)
- 时时疑问 (5)
- java/guava/python/php/ruby/R/scala/groovy (213)
- struct/spring/springmvc (37)
- mybatis/hibernate/JPA (10)
- mysql/oracle/sqlserver/db2/mongdb/redis/neo4j/GreenPlum/Teradata/hsqldb/Derby/sakila (268)
- js/jquery/jqueryUi/jqueryEaseyUI/extjs/angulrJs/react/es6/grunt/zepto/raphael (81)
- ZMQ/RabbitMQ/ActiveMQ/JMS/kafka (17)
- lucene/solr/nuth/elasticsearch/MG4J (167)
- html/css/ionic/nodejs/bootstrap (19)
- Linux/shell/centos (56)
- cvs/svn/git/sourceTree/gradle/ant/maven/mantis/docker/Kubernetes (26)
- sonatype nexus (1)
- tomcat/jetty/netty/jboss (9)
- 工具 (17)
- ETL/SPASS/MATLAB/RapidMiner/weka/kettle/DataX/Kylin (11)
- hadoop/spark/Hbase/Hive/pig/Zookeeper/HAWQ/cloudera/Impala/Oozie (190)
- ios/swift/android (9)
- 机器学习&算法&大数据 (18)
- Mesos是Apache下的开源分布式资源管理框架 (1)
- echarts/d3/highCharts/tableau (1)
- 行业技能图谱 (1)
- 大数据可视化 (2)
- tornado/ansible/twisted (2)
- Nagios/Cacti/Zabbix (0)
- eclipse/intellijIDEA/webstorm (5)
- cvs/svn/git/sourceTree/gradle/jira/bitbucket (4)
- jsp/jsf/flex/ZKoss (0)
- 测试技术 (2)
- splunk/flunm (2)
- 高并发/大数据量 (1)
- freemarker/vector/thymeleaf (1)
- docker/Kubernetes (2)
- dubbo/ESB/dubboX/wso2 (2)
最新评论
Lucene4.x之后的所有索引格式如下所示:
文件名 后缀 描述
Segments File segments.gen, segments_N 存储段文件的提交点信息
Lock File write.lock 文件锁,保证任何时刻只有一个线程可以写入索引
Segment Info .si 存储每个段文件的元数据信息
Compound File .cfs, .cfe 复合索引的文件,在系统上虚拟的一个文件,用于频繁的文件句柄
Fields .fnm 存储域文件的信息
Field Index .fdx 存储域数据的指针
Field Data .fdt 存储所有文档的字段信息
Term Dictionary .tim term字典,存储term信息
Term Index .tip term字典的索引文件
Frequencies .frq 词频文件,包含文档列表以及每一个term和其词频
Positions .prx 位置信息,存储每个term,在索引中的准确位置
Norms .nrm.cfs, .nrm.cfe 存储文档和域的编码长度以及加权因子
Per-Document Values .dv.cfs, .dv.cfe 编码除外的额外的打分因素,
Term Vector Index .tvx term向量索引,存储term在文档中的偏移距离
Term Vector Documents .tvd 包含每个文档向量的信息
Term Vector Fields .tvf 存储filed级别的向量信息
Deleted Documents .del 存储索引删除文件的信息
复合索引文件是指,除了段信息文件,锁文件,以及删除的文件外,其他的一系列索引文件压缩一个后缀名为cfs的文件,意思,就是所有的索引文件会被存储成一个单例的Directory,而非复合索引是灵活的,可以单独的访问某几个索引文件,而复合索引文件则不可以,因为其压缩成了一个文件,所以在某些场景下能够获取更高的效率,比如说,查询频繁,而不经常更新的需求,就很适合这种索引格式。
lucene索引的基本概念组成由,索引,文档,域和项组成,一个索引,通常包含一些序列的文档,一个文档包含一些序列的域,而一些域又包含一些序列的项,而一些项则包含一些列序列的最低层的字节,注意这里的序列指的是在索引结构中有序,通常有序的这种方式,某些情况可以优化索引结构。
lucene使用了倒排索引(Inverted Indexing),来存储索引信息,大大提高了检索效率,
倒排索引,举一个通俗的例子,原来基于人们的正常思维,我们会存储的是一个文章中出现了那几个单词,而倒排索引,却恰恰相反,它存储的是这个单词,包含在几个文档中,当然这个关系是由倒排链表(存储一系列docid)构成的索引,我们在检索时,通过这个单词可以快速的定位,它出现在几篇文章中,从而大大提升了检索性能。
当然lucene中不仅仅有倒排索引,也有正向的存储,而倒排之所以是lucene的核心,是因为它提升了检索性能,在检索到一个个具体的文档时,就需要我们正向的拿出这些信息,反映在实际的代码中就是我们通过检索获取一个个docid,然后通过一个个docid获取整个文档,然后我们在正向的获取各个域,以及各个项存储的具体信息,当然前提是你存储了这个字段,如果你只是索引了,而并没有存储,那么你只能检索到此条信息,但无法获取具体term的值,这个需要在建索引之前就要设计好,索引的存储结构,那些字段是检索的,那些字段是存储的等等,如果你还需要高亮一些内容,则还需要存储这个域的偏移的位置,通过这样就能准确的在文中标记检索命中的关键词,如果你打算在前台来完成这个高亮,就不要存储这些信息了。
文件名 后缀 描述
Segments File segments.gen, segments_N 存储段文件的提交点信息
Lock File write.lock 文件锁,保证任何时刻只有一个线程可以写入索引
Segment Info .si 存储每个段文件的元数据信息
Compound File .cfs, .cfe 复合索引的文件,在系统上虚拟的一个文件,用于频繁的文件句柄
Fields .fnm 存储域文件的信息
Field Index .fdx 存储域数据的指针
Field Data .fdt 存储所有文档的字段信息
Term Dictionary .tim term字典,存储term信息
Term Index .tip term字典的索引文件
Frequencies .frq 词频文件,包含文档列表以及每一个term和其词频
Positions .prx 位置信息,存储每个term,在索引中的准确位置
Norms .nrm.cfs, .nrm.cfe 存储文档和域的编码长度以及加权因子
Per-Document Values .dv.cfs, .dv.cfe 编码除外的额外的打分因素,
Term Vector Index .tvx term向量索引,存储term在文档中的偏移距离
Term Vector Documents .tvd 包含每个文档向量的信息
Term Vector Fields .tvf 存储filed级别的向量信息
Deleted Documents .del 存储索引删除文件的信息
复合索引文件是指,除了段信息文件,锁文件,以及删除的文件外,其他的一系列索引文件压缩一个后缀名为cfs的文件,意思,就是所有的索引文件会被存储成一个单例的Directory,而非复合索引是灵活的,可以单独的访问某几个索引文件,而复合索引文件则不可以,因为其压缩成了一个文件,所以在某些场景下能够获取更高的效率,比如说,查询频繁,而不经常更新的需求,就很适合这种索引格式。
lucene索引的基本概念组成由,索引,文档,域和项组成,一个索引,通常包含一些序列的文档,一个文档包含一些序列的域,而一些域又包含一些序列的项,而一些项则包含一些列序列的最低层的字节,注意这里的序列指的是在索引结构中有序,通常有序的这种方式,某些情况可以优化索引结构。
lucene使用了倒排索引(Inverted Indexing),来存储索引信息,大大提高了检索效率,
倒排索引,举一个通俗的例子,原来基于人们的正常思维,我们会存储的是一个文章中出现了那几个单词,而倒排索引,却恰恰相反,它存储的是这个单词,包含在几个文档中,当然这个关系是由倒排链表(存储一系列docid)构成的索引,我们在检索时,通过这个单词可以快速的定位,它出现在几篇文章中,从而大大提升了检索性能。
当然lucene中不仅仅有倒排索引,也有正向的存储,而倒排之所以是lucene的核心,是因为它提升了检索性能,在检索到一个个具体的文档时,就需要我们正向的拿出这些信息,反映在实际的代码中就是我们通过检索获取一个个docid,然后通过一个个docid获取整个文档,然后我们在正向的获取各个域,以及各个项存储的具体信息,当然前提是你存储了这个字段,如果你只是索引了,而并没有存储,那么你只能检索到此条信息,但无法获取具体term的值,这个需要在建索引之前就要设计好,索引的存储结构,那些字段是检索的,那些字段是存储的等等,如果你还需要高亮一些内容,则还需要存储这个域的偏移的位置,通过这样就能准确的在文中标记检索命中的关键词,如果你打算在前台来完成这个高亮,就不要存储这些信息了。
发表评论
-
elasticsearch异常信息汇总
2017-11-06 09:34 15421.IndexMissingException 异常信息 ... -
Elasticsearch的架构
2018-03-22 10:30 507为什么要学习架构? Elasticsearch的一些架构 ... -
怎么在Ubuntu上打开端口
2017-10-21 20:45 0Netstat -tln 命令是用来查看linux的端口使用情 ... -
Elasticsearch工作原理
2018-03-22 10:30 448一、关于搜索引擎 各 ... -
Elasticsearch的路由(Routing)特性
2017-10-11 10:41 0Elasticsearch路由机制介 ... -
Elasticsearch中的segment理解
2017-10-11 09:58 1876在Elasticsearch中, 需要搞清楚几个名词,如se ... -
Elasticsearch的路由(Routing)特性
2017-09-28 16:52 614Elasticsearch路由机制介绍 Elastics ... -
Elasticsearch 的 Shard 和 Segment
2017-09-28 16:05 1198Shard(分片) 一个Shard就是一个Lu ... -
开源大数据查询分析引擎现状
2017-09-22 03:04 828大数据查询分析是云计算中核心问题之一,自从Google在20 ... -
大数据处理方面的 7 个开源搜索引擎
2017-09-22 03:01 494大数据是一个包括一切 ... -
开源大数据查询分析引擎现状
2017-09-23 11:26 547大数据查询分析是云计算中核心问题之一,自从Google在2 ... -
elasticsearch 把很多类型都放在一个索引下面 会不会导致查询慢
2017-09-25 09:45 979主要看数据量ES索引优 ... -
腾讯大数据Hermes爱马仕的系统
2017-09-23 11:15 982腾讯大数据最近做了几件事,上线了一个官方网站http:// ... -
配置高性能Elasticsearch集群的9个小贴士
2017-09-25 10:02 589Loggly服务底层的很多 ... -
Elasticsearch与Solr
2017-09-25 16:24 546Elasticsearch简介* Elasti ... -
大数据杂谈微课堂|Elasticsearch 5.0新版本的特性与改进
2017-09-26 09:57 808Elastic将在今年秋季的 ... -
ElasticSearch性能优化策略
2017-09-26 09:51 447ElasticSearch性能优化主 ... -
ES索引优化
2017-09-19 20:39 0ES索引优化篇主要从两个方面解决问题,一是索引数据过程;二是 ... -
分词与索引的关系
2017-09-19 20:33 0分词与索引,是中文搜索里最重要的两个技术,而且两者间是密不可 ... -
Elasticsearch中的segment理解
2017-09-19 20:30 0在Elasticsearch中, 需要搞清楚几个名词,如se ...
相关推荐
**Lucene索引器实例详解** Lucene是一个高性能、全文本搜索库,由Apache软件基金会开发,被广泛应用于各种搜索引擎的构建。它提供了一个高级的、灵活的、可扩展的接口,使得开发者能够轻松地在应用程序中实现全文...
在使用 Lucene 进行信息检索时,有时我们需要对建立的索引进行查看、调试或分析,这时就需要借助 Lucene 的索引查看工具。 Luke 是一个非常实用的 Lucene 索引浏览器,全称为 Lucidworks Luke。它允许用户以图形化...
这就是"Lucene 索引 查看 工具"的用途,它可以帮助我们分析和理解 Lucene 索引的工作原理。 主要知识点: 1. **Lucene 索引**:Lucene 的索引是一种倒排索引,它将文档中的词项(tokens)映射到包含这些词项的文档...
《深入理解Lucene索引查看程序与代码》 在信息技术领域,搜索引擎的高效运作离不开底层索引技术的支持,而Lucene作为Apache软件基金会的一个开放源代码项目,正是一个强大的全文检索库,它提供了高效的文本搜索功能...
以下是对Lucene索引机制的详细解析: 一、Lucene的索引过程 1. 文档分析:当向Lucene添加文档时,首先会经过一个分词器(Tokenizer),将文本拆分成一系列的词项(Token)。接着,这些词项会被过滤(Filter)和...
**Lucene索引和查询** Lucene是Apache软件基金会的开放源码全文搜索引擎库,它提供了文本检索的核心工具,使得开发者能够快速构建自己的搜索应用。本项目中的代码旨在展示如何利用Lucene对多个文件夹下的数据进行...
`Luck`,全称`Luke`,是一款强大的Lucene索引浏览器和分析器工具,可以帮助开发者、数据分析师以及对Lucene感兴趣的人员查看、理解和调试Lucene索引。 `Luke 7.4.0`是这款工具的一个特定版本,它专门设计用来与...
《深入理解Lucene索引文件查看工具LukeAll 4.7.1》 在信息检索领域,Lucene作为一款强大的全文搜索引擎库,被广泛应用在各种数据检索系统中。然而,对于开发者来说,理解并调试Lucene创建的索引文件并非易事。此时...
lukeall-0.9.jar为Lucene索引查看工具,方便大家查看索引
以上就是关于“Lucene索引的简单使用”的详细介绍,包括其核心概念、创建和查询索引的步骤以及一些高级特性。希望对你理解和应用Lucene有所帮助。在实际开发中,可以根据需求选择合适的Analyzer,优化索引策略,以...
《深入理解Luke:洞察Lucene索引文件》 在信息技术领域,搜索引擎的高效运作离不开对数据的快速检索,而Lucene作为开源全文检索库,扮演了核心角色。在这个过程中,Luke工具提供了一种直观的方式,让我们能够查看和...
以下是对Lucene索引文件格式的详细说明。 首先,我们要理解Lucene索引的基本结构。一个Lucene索引位于一个文件夹中,这个文件夹包含了多个段(Segment)。每个段是独立的,包含了一组文档,并且可以与其他段合并。...
**Lucene索引结构原理** Lucene是Apache软件基金会的开放源代码全文搜索引擎库,它为Java开发人员提供了强大的文本搜索功能。理解Lucene的索引结构原理对于优化搜索性能和设计高效的搜索应用至关重要。 首先,我们...
**Lucene索引的基本操作** Lucene是一款由Apache软件基金会开发的全文检索库,它提供了高效、可扩展的全文检索功能。在Java开发环境中,Lucene是广泛使用的文本搜索工具,能够帮助开发者构建复杂的搜索引擎。本文将...
本文将详细介绍一款被称为“很好的lucene索引查看工具”的实用软件,旨在帮助用户更好地理解和调试Lucene索引。 Lucene索引查看工具是一款专为Lucene设计的可视化工具,它允许用户直观地浏览和分析由Lucene创建的...
《Lucene索引小示例解析》 Lucene是一个高性能、全文检索库,它由Apache软件基金会开发并维护。在Java编程环境中,Lucene被广泛应用于构建搜索功能,特别是对于大量文本数据的高效检索。本篇文章将通过一个简单的小...
这款已经老了,2.4以后的lucene索引用不了。我上传了最新版本的,有需要的话!请到http://download.csdn.net/source/1423241 下。一款可以查看Lucene分词后在索引的排名以及是否有无该词,很多时候用于查看有无需要...
luke是一个用于Lucene/Solr/Elasticsearch 搜索引擎,方便开发和诊断的 GUI(可视化)工具。
而在Lucene中,基本单位是Document,它同样由多个字段组成,但Lucene索引的是这些字段的内容,以加速文本检索。 - **索引构建**:Lucene支持增量索引和批量索引,可以处理数据源的小幅变化或大规模数据。数据库通常...
《深入理解Lucene索引库查看器5.3.0》 Lucene是一个开源的全文检索库,被广泛应用于各种搜索引擎的开发。在对Lucene进行开发和调试时,一个强大的工具——Lucene索引库查看器(Luke)发挥了至关重要的作用。 Luke ...