`
wei1.z
  • 浏览: 4081 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

HashMap 分析

 
阅读更多

来自于JDK version 1.0.79

 

/*

 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.

 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

 *

 */

 

package java.util;

import java.io.*;

 

/**

 * Hash table based implementation of the <tt>Map</tt> interface.  This

 * implementation provides all of the optional map operations, and permits

 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>

 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is

 * unsynchronized and permits nulls.)  This class makes no guarantees as to

 * the order of the map; in particular, it does not guarantee that the order

 * will remain constant over time.

 *

 * <p>This implementation provides constant-time performance for the basic

 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function

 * disperses the elements properly among the buckets.  Iteration over

 * collection views requires time proportional to the "capacity" of the

 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number

 * of key-value mappings).  Thus, it's very important not to set the initial

 * capacity too high (or the load factor too low) if iteration performance is

 * important.

 *

 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its

 * performance: <i>initial capacity</i> and <i>load factor</i>.  The

 * <i>capacity</i> is the number of buckets in the hash table, and the initial

 * capacity is simply the capacity at the time the hash table is created.  The

 * <i>load factor</i> is a measure of how full the hash table is allowed to

 * get before its capacity is automatically increased.  When the number of

 * entries in the hash table exceeds the product of the load factor and the

 * current capacity, the hash table is <i>rehashed</i> (that is, internal data

 * structures are rebuilt) so that the hash table has approximately twice the

 * number of buckets.

 *

 * <p>As a general rule, the default load factor (.75) offers a good tradeoff

 * between time and space costs.  Higher values decrease the space overhead

 * but increase the lookup cost (reflected in most of the operations of the

 * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>).  The

 * expected number of entries in the map and its load factor should be taken

 * into account when setting its initial capacity, so as to minimize the

 * number of rehash operations.  If the initial capacity is greater

 * than the maximum number of entries divided by the load factor, no

 * rehash operations will ever occur.

 *

 * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,

 * creating it with a sufficiently large capacity will allow the mappings to

 * be stored more efficiently than letting it perform automatic rehashing as

 * needed to grow the table.

 *

 * <p><strong>Note that this implementation is not synchronized.</strong>

 * If multiple threads access a hash map concurrently, and at least one of

 * the threads modifies the map structurally, it <i>must</i> be

 * synchronized externally.  (A structural modification is any operation

 * that adds or deletes one or more mappings; merely changing the value

 * associated with a key that an instance already contains is not a

 * structural modification.)  This is typically accomplished by

 * synchronizing on some object that naturally encapsulates the map.

 *

 * If no such object exists, the map should be "wrapped" using the

 * {@link Collections#synchronizedMap Collections.synchronizedMap}

 * method.  This is best done at creation time, to prevent accidental

 * unsynchronized access to the map:<pre>

 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>

 *

 * <p>The iterators returned by all of this class's "collection view methods"

 * are <i>fail-fast</i>: if the map is structurally modified at any time after

 * the iterator is created, in any way except through the iterator's own

 * <tt>remove</tt> method, the iterator will throw a

 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent

 * modification, the iterator fails quickly and cleanly, rather than risking

 * arbitrary, non-deterministic behavior at an undetermined time in the

 * future.

 *

 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed

 * as it is, generally speaking, impossible to make any hard guarantees in the

 * presence of unsynchronized concurrent modification.  Fail-fast iterators

 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.

 * Therefore, it would be wrong to write a program that depended on this

 * exception for its correctness: <i>the fail-fast behavior of iterators

 * should be used only to detect bugs.</i>

 *

 * <p>This class is a member of the

 * <a href="{@docRoot}/../technotes/guides/collections/index.html">

 * Java Collections Framework</a>.

 *

 * @param <K> the type of keys maintained by this map

 * @param <V> the type of mapped values

 *

 * @author  Doug Lea

 * @author  Josh Bloch

 * @author  Arthur van Hoff

 * @author  Neal Gafter

 * @see     Object#hashCode()

 * @see     Collection

 * @see     Map

 * @see     TreeMap

 * @see     Hashtable

 * @since   1.2

 */

 

public class HashMap<K,V>

    extends AbstractMap<K,V>

    implements Map<K,V>, Cloneable, Serializable

{

 

    /**

     * The default initial capacity - MUST be a power of two.

     */

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

 

    /**

     * The maximum capacity, used if a higher value is implicitly specified

     * by either of the constructors with arguments.

     * MUST be a power of two <= 1<<30.

     */

    static final int MAXIMUM_CAPACITY = 1 << 30;

 

    /**

     * The load factor used when none specified in constructor.

     */

    static final float DEFAULT_LOAD_FACTOR = 0.75f;

 

    /**

     * An empty table instance to share when the table is not inflated.

     */

    static final Entry<?,?>[] EMPTY_TABLE = {};

 

    /**

     * The table, resized as necessary. Length MUST Always be a power of two.

     */

    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

 

    /**

     * The number of key-value mappings contained in this map.

     */

    transient int size;

 

    /**

     * The next size value at which to resize (capacity * load factor).

     * @serial

     */

    // If table == EMPTY_TABLE then this is the initial capacity at which the

    // table will be created when inflated.

    int threshold;

 

    /**

     * The load factor for the hash table.

     *

     * @serial

     */

    final float loadFactor;

 

    /**

     * The number of times this HashMap has been structurally modified

     * Structural modifications are those that change the number of mappings in

     * the HashMap or otherwise modify its internal structure (e.g.,

     * rehash).  This field is used to make iterators on Collection-views of

     * the HashMap fail-fast.  (See ConcurrentModificationException).

     */

    transient int modCount;

 

    /**

     * The default threshold of map capacity above which alternative hashing is

     * used for String keys. Alternative hashing reduces the incidence of

     * collisions due to weak hash code calculation for String keys.

     * <p/>

     * This value may be overridden by defining the system property

     * {@code jdk.map.althashing.threshold}. A property value of {@code 1}

     * forces alternative hashing to be used at all times whereas

     * {@code -1} value ensures that alternative hashing is never used.

     */

    static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;

 

    /**

     * holds values which can't be initialized until after VM is booted.

     */

    private static class Holder {

 

        /**

         * Table capacity above which to switch to use alternative hashing.

         */

        static final int ALTERNATIVE_HASHING_THRESHOLD;

 

        static {

            String altThreshold = java.security.AccessController.doPrivileged(

                new sun.security.action.GetPropertyAction(

                    "jdk.map.althashing.threshold"));

 

            int threshold;

            try {

                threshold = (null != altThreshold)

                        ? Integer.parseInt(altThreshold)

                        : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;

 

                // disable alternative hashing if -1

                if (threshold == -1) {

                    threshold = Integer.MAX_VALUE;

                }

 

                if (threshold < 0) {

                    throw new IllegalArgumentException("value must be positive integer.");

                }

            } catch(IllegalArgumentException failed) {

                throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);

            }

 

            ALTERNATIVE_HASHING_THRESHOLD = threshold;

        }

    }

 

    /**

     * A randomizing value associated with this instance that is applied to

     * hash code of keys to make hash collisions harder to find. If 0 then

     * alternative hashing is disabled.

     */

    transient int hashSeed = 0;

 

    /**

     * Constructs an empty <tt>HashMap</tt> with the specified initial

     * capacity and load factor.

     *

     * @param  initialCapacity the initial capacity

     * @param  loadFactor      the load factor

     * @throws IllegalArgumentException if the initial capacity is negative

     *         or the load factor is nonpositive

     */

    public HashMap(int initialCapacity, float loadFactor) {

        if (initialCapacity < 0)

            throw new IllegalArgumentException("Illegal initial capacity: " +

                                               initialCapacity);

        if (initialCapacity > MAXIMUM_CAPACITY)

            initialCapacity = MAXIMUM_CAPACITY;

        if (loadFactor <= 0 || Float.isNaN(loadFactor))

            throw new IllegalArgumentException("Illegal load factor: " +

                                               loadFactor);

 

        this.loadFactor = loadFactor;

        threshold = initialCapacity;

        init();

    }

 

    /**

     * Constructs an empty <tt>HashMap</tt> with the specified initial

     * capacity and the default load factor (0.75).

     *

     * @param  initialCapacity the initial capacity.

     * @throws IllegalArgumentException if the initial capacity is negative.

     */

    public HashMap(int initialCapacity) {

        this(initialCapacity, DEFAULT_LOAD_FACTOR);

    }

 

    /**

     * Constructs an empty <tt>HashMap</tt> with the default initial capacity

     * (16) and the default load factor (0.75).

     */

    public HashMap() {

        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);

    }

 

    /**

     * Constructs a new <tt>HashMap</tt> with the same mappings as the

     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with

     * default load factor (0.75) and an initial capacity sufficient to

     * hold the mappings in the specified <tt>Map</tt>.

     *

     * @param   m the map whose mappings are to be placed in this map

     * @throws  NullPointerException if the specified map is null

     */

    public HashMap(Map<? extends K, ? extends V> m) {

        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,

                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);

        inflateTable(threshold);

 

        putAllForCreate(m);

    }

 

    private static int roundUpToPowerOf2(int number) {      // 找到最小的大于等于当前值并是2的幂的值

        // assert number >= 0 : "number must be non-negative";

        return number >= MAXIMUM_CAPACITY

                ? MAXIMUM_CAPACITY

                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;    //highestOneBit 见Integer的分析, 

    }

// 为何要number-1 再左移动一位,而不是直接左移动一位?这是由于,如果这个数正好的2的幂次数,比如16,左移动一位是32,而不是本身,会造成问题!

 

    /**

     * Inflates the table.

     */

    private void inflateTable(int toSize) {

        // Find a power of 2 >= toSize

        int capacity = roundUpToPowerOf2(toSize);

 

        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);

        table = new Entry[capacity];

        initHashSeedAsNeeded(capacity);

    }

 

    // internal utilities

 

    /**

     * Initialization hook for subclasses. This method is called

     * in all constructors and pseudo-constructors (clone, readObject)

     * after HashMap has been initialized but before any entries have

     * been inserted.  (In the absence of this method, readObject would

     * require explicit knowledge of subclasses.)

     */

    void init() {

    }

 

    /**

     * Initialize the hashing mask value. We defer initialization until we

     * really need it.

     */

    final boolean initHashSeedAsNeeded(int capacity) {     

        boolean currentAltHashing = hashSeed != 0;

        boolean useAltHashing = sun.misc.VM.isBooted() &&

                (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);

        boolean switching = currentAltHashing ^ useAltHashing;  //return true, if not same value, or return false

        if (switching) {

            hashSeed = useAltHashing

                ? sun.misc.Hashing.randomHashSeed(this)

                : 0;

        }

        return switching;

    }

 

    /**

     * Retrieve object hash code and applies a supplemental hash function to the

     * result hash, which defends against poor quality hash functions.  This is

     * critical because HashMap uses power-of-two length hash tables, that

     * otherwise encounter collisions for hashCodes that do not differ

     * in lower bits. Note: Null keys always map to hash 0, thus index 0.

     */

    final int hash(Object k) {

        int h = hashSeed;

        if (0 != h && k instanceof String) {

            return sun.misc.Hashing.stringHash32((String) k);

        }

 

        h ^= k.hashCode();

 

        // This function ensures that hashCodes that differ only by

        // constant multiples at each bit position have a bounded

        // number of collisions (approximately 8 at default load factor).

        h ^= (h >>> 20) ^ (h >>> 12);    

        return h ^ (h >>> 7) ^ (h >>> 4);

        // How to prove??????

    }

 

    /**

     * Returns index for hash code h.

     */

    static int indexFor(int h, int length) {

        // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";

        return h & (length-1);

    }

why length-1?

//http://pengranxiang.iteye.com/blog/543893

 

    /**

     * Returns the number of key-value mappings in this map.

     *

     * @return the number of key-value mappings in this map

     */

    public int size() {

        return size;

    }

 

    /**

     * Returns <tt>true</tt> if this map contains no key-value mappings.

     *

     * @return <tt>true</tt> if this map contains no key-value mappings

     */

    public boolean isEmpty() {

        return size == 0;

    }

 

    /**

     * Returns the value to which the specified key is mapped,

     * or {@code null} if this map contains no mapping for the key.

     *

     * <p>More formally, if this map contains a mapping from a key

     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :

     * key.equals(k))}, then this method returns {@code v}; otherwise

     * it returns {@code null}.  (There can be at most one such mapping.)

     *

     * <p>A return value of {@code null} does not <i>necessarily</i>

     * indicate that the map contains no mapping for the key; it's also

     * possible that the map explicitly maps the key to {@code null}.

     * The {@link #containsKey containsKey} operation may be used to

     * distinguish these two cases.

     *

     * @see #put(Object, Object)

     */

    public V get(Object key) {

        if (key == null)

            return getForNullKey();

        Entry<K,V> entry = getEntry(key);

 

        return null == entry ? null : entry.getValue();

    }

 

    /**

     * Offloaded version of get() to look up null keys.  Null keys map

     * to index 0.  This null case is split out into separate methods

     * for the sake of performance in the two most commonly used

     * operations (get and put), but incorporated with conditionals in

     * others.

     */

    private V getForNullKey() {

        if (size == 0) {

            return null;

        }

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null)

                return e.value;

        }

        return null;

    }

 

    /**

     * Returns <tt>true</tt> if this map contains a mapping for the

     * specified key.

     *

     * @param   key   The key whose presence in this map is to be tested

     * @return <tt>true</tt> if this map contains a mapping for the specified

     * key.

     */

    public boolean containsKey(Object key) {

        return getEntry(key) != null;

    }

 

    /**

     * Returns the entry associated with the specified key in the

     * HashMap.  Returns null if the HashMap contains no mapping

     * for the key.

     */

    final Entry<K,V> getEntry(Object key) {

        if (size == 0) {

            return null;

        }

 

        int hash = (key == null) ? 0 : hash(key);

        for (Entry<K,V> e = table[indexFor(hash, table.length)];

             e != null;

             e = e.next) {

            Object k;

            if (e.hash == hash &&

                ((k = e.key) == key || (key != null && key.equals(k))))

                return e;

        }

        return null;

    }

 

    /**

     * Associates the specified value with the specified key in this map.

     * If the map previously contained a mapping for the key, the old

     * value is replaced.

     *

     * @param key key with which the specified value is to be associated

     * @param value value to be associated with the specified key

     * @return the previous value associated with <tt>key</tt>, or

     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.

     *         (A <tt>null</tt> return can also indicate that the map

     *         previously associated <tt>null</tt> with <tt>key</tt>.)

     */

    public V put(K key, V value) {

        if (table == EMPTY_TABLE) {

            inflateTable(threshold);

        }

        if (key == null)

            return putForNullKey(value);

        int hash = hash(key);

        int i = indexFor(hash, table.length);

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {

            Object k;

            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

 

        modCount++;

        addEntry(hash, key, value, i);

        return null;

    }

 

    /**

     * Offloaded version of put for null keys

     */

    private V putForNullKey(V value) {

        for (Entry<K,V> e = table[0]; e != null; e = e.next) {

            if (e.key == null) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                return oldValue;

            }

        }

        modCount++;

        addEntry(0, null, value, 0);

        return null;

    }

 

    /**

     * This method is used instead of put by constructors and

     * pseudoconstructors (clone, readObject).  It does not resize the table,

     * check for comodification, etc.  It calls createEntry rather than

     * addEntry.

     */

    private void putForCreate(K key, V value) {

        int hash = null == key ? 0 : hash(key);

        int i = indexFor(hash, table.length);

 

        /**

         * Look for preexisting entry for key.  This will never happen for

         * clone or deserialize.  It will only happen for construction if the

         * input Map is a sorted map whose ordering is inconsistent w/ equals.

         */

        for (Entry<K,V> e = table[i]; e != null; e = e.next) {

            Object k;

            if (e.hash == hash &&

                ((k = e.key) == key || (key != null && key.equals(k)))) {

                e.value = value;

                return;

            }

        }

 

        createEntry(hash, key, value, i);

    }

 

    private void putAllForCreate(Map<? extends K, ? extends V> m) {

        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())

            putForCreate(e.getKey(), e.getValue());

    }

 

    /**

     * Rehashes the contents of this map into a new array with a

     * larger capacity.  This method is called automatically when the

     * number of keys in this map reaches its threshold.

     *

     * If current capacity is MAXIMUM_CAPACITY, this method does not

     * resize the map, but sets threshold to Integer.MAX_VALUE.

     * This has the effect of preventing future calls.

     *

     * @param newCapacity the new capacity, MUST be a power of two;

     *        must be greater than current capacity unless current

     *        capacity is MAXIMUM_CAPACITY (in which case value

     *        is irrelevant).

     */

    void resize(int newCapacity) {

        Entry[] oldTable = table;

        int oldCapacity = oldTable.length;

        if (oldCapacity == MAXIMUM_CAPACITY) {

            threshold = Integer.MAX_VALUE;

            return;

        }

 

        Entry[] newTable = new Entry[newCapacity];

        transfer(newTable, initHashSeedAsNeeded(newCapacity));

        table = newTable;

        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);

    }

 

    /**

     * Transfers all entries from current table to newTable.

     */

    void transfer(Entry[] newTable, boolean rehash) {

        int newCapacity = newTable.length;

        for (Entry<K,V> e : table) {

            while(null != e) {

                Entry<K,V> next = e.next;

                if (rehash) {

                    e.hash = null == e.key ? 0 : hash(e.key);

                }

                int i = indexFor(e.hash, newCapacity);

                e.next = newTable[i];

                newTable[i] = e;

                e = next;

            }

        }

    }

 

    /**

     * Copies all of the mappings from the specified map to this map.

     * These mappings will replace any mappings that this map had for

     * any of the keys currently in the specified map.

     *

     * @param m mappings to be stored in this map

     * @throws NullPointerException if the specified map is null

     */

    public void putAll(Map<? extends K, ? extends V> m) {

        int numKeysToBeAdded = m.size();

        if (numKeysToBeAdded == 0)

            return;

 

        if (table == EMPTY_TABLE) {

            inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));

        }

 

        /*

         * Expand the map if the map if the number of mappings to be added

         * is greater than or equal to threshold.  This is conservative; the

         * obvious condition is (m.size() + size) >= threshold, but this

         * condition could result in a map with twice the appropriate capacity,

         * if the keys to be added overlap with the keys already in this map.

         * By using the conservative calculation, we subject ourself

         * to at most one extra resize.

         */

        if (numKeysToBeAdded > threshold) {

            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);

            if (targetCapacity > MAXIMUM_CAPACITY)

                targetCapacity = MAXIMUM_CAPACITY;

            int newCapacity = table.length;

            while (newCapacity < targetCapacity)

                newCapacity <<= 1;

            if (newCapacity > table.length)

                resize(newCapacity);

        }

 

        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())

            put(e.getKey(), e.getValue());

    }

 

    /**

     * Removes the mapping for the specified key from this map if present.

     *

     * @param  key key whose mapping is to be removed from the map

     * @return the previous value associated with <tt>key</tt>, or

     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.

     *         (A <tt>null</tt> return can also indicate that the map

     *         previously associated <tt>null</tt> with <tt>key</tt>.)

     */

    public V remove(Object key) {

        Entry<K,V> e = removeEntryForKey(key);

        return (e == null ? null : e.value);

    }

 

    /**

     * Removes and returns the entry associated with the specified key

     * in the HashMap.  Returns null if the HashMap contains no mapping

     * for this key.

     */

    final Entry<K,V> removeEntryForKey(Object key) {

        if (size == 0) {

            return null;

        }

        int hash = (key == null) ? 0 : hash(key);

        int i = indexFor(hash, table.length);

        Entry<K,V> prev = table[i];

        Entry<K,V> e = prev;

 

        while (e != null) {

            Entry<K,V> next = e.next;

            Object k;

            if (e.hash == hash &&

                ((k = e.key) == key || (key != null && key.equals(k)))) {

                modCount++;

                size--;

                if (prev == e)

                    table[i] = next;

                else

                    prev.next = next;

                e.recordRemoval(this);

                return e;

            }

            prev = e;

            e = next;

        }

 

        return e;

    }

 

    /**

     * Special version of remove for EntrySet using {@code Map.Entry.equals()}

     * for matching.

     */

    final Entry<K,V> removeMapping(Object o) {

        if (size == 0 || !(o instanceof Map.Entry))

            return null;

 

        Map.Entry<K,V> entry = (Map.Entry<K,V>) o;

        Object key = entry.getKey();

        int hash = (key == null) ? 0 : hash(key);

        int i = indexFor(hash, table.length);

        Entry<K,V> prev = table[i];

        Entry<K,V> e = prev;

 

        while (e != null) {

            Entry<K,V> next = e.next;

            if (e.hash == hash && e.equals(entry)) {

                modCount++;

                size--;

                if (prev == e)

                    table[i] = next;

                else

                    prev.next = next;

                e.recordRemoval(this);

                return e;

            }

            prev = e;

            e = next;

        }

 

        return e;

    }

 

    /**

     * Removes all of the mappings from this map.

     * The map will be empty after this call returns.

     */

    public void clear() {

        modCount++;

        Arrays.fill(table, null);

        size = 0;

    }

 

    /**

     * Returns <tt>true</tt> if this map maps one or more keys to the

     * specified value.

     *

     * @param value value whose presence in this map is to be tested

     * @return <tt>true</tt> if this map maps one or more keys to the

     *         specified value

     */

    public boolean containsValue(Object value) {

        if (value == null)

            return containsNullValue();

 

        Entry[] tab = table;

        for (int i = 0; i < tab.length ; i++)

            for (Entry e = tab[i] ; e != null ; e = e.next)

                if (value.equals(e.value))

                    return true;

        return false;

    }

 

    /**

     * Special-case code for containsValue with null argument

     */

    private boolean containsNullValue() {

        Entry[] tab = table;

        for (int i = 0; i < tab.length ; i++)

            for (Entry e = tab[i] ; e != null ; e = e.next)

                if (e.value == null)

                    return true;

        return false;

    }

 

    /**

     * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and

     * values themselves are not cloned.

     *

     * @return a shallow copy of this map

     */

    public Object clone() {

        HashMap<K,V> result = null;

        try {

            result = (HashMap<K,V>)super.clone();

        } catch (CloneNotSupportedException e) {

            // assert false;

        }

        if (result.table != EMPTY_TABLE) {

            result.inflateTable(Math.min(

                (int) Math.min(

                    size * Math.min(1 / loadFactor, 4.0f),

                    // we have limits...

                    HashMap.MAXIMUM_CAPACITY),

               table.length));

        }

        result.entrySet = null;

        result.modCount = 0;

        result.size = 0;

        result.init();

        result.putAllForCreate(this);

 

        return result;

    }

 

    static class Entry<K,V> implements Map.Entry<K,V> {

        final K key;

        V value;

        Entry<K,V> next;

        int hash;

 

        /**

         * Creates new entry.

         */

        Entry(int h, K k, V v, Entry<K,V> n) {

            value = v;

            next = n;

            key = k;

            hash = h;

        }

 

        public final K getKey() {

            return key;

        }

 

        public final V getValue() {

            return value;

        }

 

        public final V setValue(V newValue) {

            V oldValue = value;

            value = newValue;

            return oldValue;

        }

 

        public final boolean equals(Object o) {

            if (!(o instanceof Map.Entry))

                return false;

            Map.Entry e = (Map.Entry)o;

            Object k1 = getKey();

            Object k2 = e.getKey();

            if (k1 == k2 || (k1 != null && k1.equals(k2))) {

                Object v1 = getValue();

                Object v2 = e.getValue();

                if (v1 == v2 || (v1 != null && v1.equals(v2)))

                    return true;

            }

            return false;

        }

 

        public final int hashCode() {

            return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());

        }

 

        public final String toString() {

            return getKey() + "=" + getValue();

        }

 

        /**

         * This method is invoked whenever the value in an entry is

         * overwritten by an invocation of put(k,v) for a key k that's already

         * in the HashMap.

         */

        void recordAccess(HashMap<K,V> m) {

        }

 

        /**

         * This method is invoked whenever the entry is

         * removed from the table.

         */

        void recordRemoval(HashMap<K,V> m) {

        }

    }

 

    /**

     * Adds a new entry with the specified key, value and hash code to

     * the specified bucket.  It is the responsibility of this

     * method to resize the table if appropriate.

     *

     * Subclass overrides this to alter the behavior of put method.

     */

    void addEntry(int hash, K key, V value, int bucketIndex) {

        if ((size >= threshold) && (null != table[bucketIndex])) {

            resize(2 * table.length);

            hash = (null != key) ? hash(key) : 0;

            bucketIndex = indexFor(hash, table.length);

        }

 

        createEntry(hash, key, value, bucketIndex);

    }

 

    /**

     * Like addEntry except that this version is used when creating entries

     * as part of Map construction or "pseudo-construction" (cloning,

     * deserialization).  This version needn't worry about resizing the table.

     *

     * Subclass overrides this to alter the behavior of HashMap(Map),

     * clone, and readObject.

     */

    void createEntry(int hash, K key, V value, int bucketIndex) {

        Entry<K,V> e = table[bucketIndex];

        table[bucketIndex] = new Entry<>(hash, key, value, e);

        size++;

    }

 

    private abstract class HashIterator<E> implements Iterator<E> {

        Entry<K,V> next;        // next entry to return

        int expectedModCount;   // For fast-fail

        int index;              // current slot

        Entry<K,V> current;     // current entry

 

        HashIterator() {

            expectedModCount = modCount;

            if (size > 0) { // advance to first entry

                Entry[] t = table;

                while (index < t.length && (next = t[index++]) == null)

                    ;

            }

        }

 

        public final boolean hasNext() {

            return next != null;

        }

 

        final Entry<K,V> nextEntry() {

            if (modCount != expectedModCount)

                throw new ConcurrentModificationException();

            Entry<K,V> e = next;

            if (e == null)

                throw new NoSuchElementException();

 

            if ((next = e.next) == null) {

                Entry[] t = table;

                while (index < t.length && (next = t[index++]) == null)

                    ;

            }

            current = e;

            return e;

        }

 

        public void remove() {

            if (current == null)

                throw new IllegalStateException();

            if (modCount != expectedModCount)

                throw new ConcurrentModificationException();

            Object k = current.key;

            current = null;

            HashMap.this.removeEntryForKey(k);

            expectedModCount = modCount;

        }

    }

 

    private final class ValueIterator extends HashIterator<V> {

        public V next() {

            return nextEntry().value;

        }

    }

 

    private final class KeyIterator extends HashIterator<K> {

        public K next() {

            return nextEntry().getKey();

        }

    }

 

    private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {

        public Map.Entry<K,V> next() {

            return nextEntry();

        }

    }

 

    // Subclass overrides these to alter behavior of views' iterator() method

    Iterator<K> newKeyIterator()   {

        return new KeyIterator();

    }

    Iterator<V> newValueIterator()   {

        return new ValueIterator();

    }

    Iterator<Map.Entry<K,V>> newEntryIterator()   {

        return new EntryIterator();

    }

 

 

    // Views

 

    private transient Set<Map.Entry<K,V>> entrySet = null;

 

    /**

     * Returns a {@link Set} view of the keys contained in this map.

     * The set is backed by the map, so changes to the map are

     * reflected in the set, and vice-versa.  If the map is modified

     * while an iteration over the set is in progress (except through

     * the iterator's own <tt>remove</tt> operation), the results of

     * the iteration are undefined.  The set supports element removal,

     * which removes the corresponding mapping from the map, via the

     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,

     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>

     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>

     * operations.

     */

    public Set<K> keySet() {

        Set<K> ks = keySet;

        return (ks != null ? ks : (keySet = new KeySet()));

    }

 

    private final class KeySet extends AbstractSet<K> {

        public Iterator<K> iterator() {

            return newKeyIterator();

        }

        public int size() {

            return size;

        }

        public boolean contains(Object o) {

            return containsKey(o);

        }

        public boolean remove(Object o) {

            return HashMap.this.removeEntryForKey(o) != null;

        }

        public void clear() {

            HashMap.this.clear();

        }

    }

 

    /**

     * Returns a {@link Collection} view of the values contained in this map.

     * The collection is backed by the map, so changes to the map are

     * reflected in the collection, and vice-versa.  If the map is

     * modified while an iteration over the collection is in progress

     * (except through the iterator's own <tt>remove</tt> operation),

     * the results of the iteration are undefined.  The collection

     * supports element removal, which removes the corresponding

     * mapping from the map, via the <tt>Iterator.remove</tt>,

     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,

     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not

     * support the <tt>add</tt> or <tt>addAll</tt> operations.

     */

    public Collection<V> values() {

        Collection<V> vs = values;

        return (vs != null ? vs : (values = new Values()));

    }

 

    private final class Values extends AbstractCollection<V> {

        public Iterator<V> iterator() {

            return newValueIterator();

        }

        public int size() {

            return size;

        }

        public boolean contains(Object o) {

            return containsValue(o);

        }

        public void clear() {

            HashMap.this.clear();

        }

    }

 

    /**

     * Returns a {@link Set} view of the mappings contained in this map.

     * The set is backed by the map, so changes to the map are

     * reflected in the set, and vice-versa.  If the map is modified

     * while an iteration over the set is in progress (except through

     * the iterator's own <tt>remove</tt> operation, or through the

     * <tt>setValue</tt> operation on a map entry returned by the

     * iterator) the results of the iteration are undefined.  The set

     * supports element removal, which removes the corresponding

     * mapping from the map, via the <tt>Iterator.remove</tt>,

     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and

     * <tt>clear</tt> operations.  It does not support the

     * <tt>add</tt> or <tt>addAll</tt> operations.

     *

     * @return a set view of the mappings contained in this map

     */

    public Set<Map.Entry<K,V>> entrySet() {

        return entrySet0();

    }

 

    private Set<Map.Entry<K,V>> entrySet0() {

        Set<Map.Entry<K,V>> es = entrySet;

        return es != null ? es : (entrySet = new EntrySet());

    }

 

    private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {

        public Iterator<Map.Entry<K,V>> iterator() {

            return newEntryIterator();

        }

        public boolean contains(Object o) {

            if (!(o instanceof Map.Entry))

                return false;

            Map.Entry<K,V> e = (Map.Entry<K,V>) o;

            Entry<K,V> candidate = getEntry(e.getKey());

            return candidate != null && candidate.equals(e);

        }

        public boolean remove(Object o) {

            return removeMapping(o) != null;

        }

        public int size() {

            return size;

        }

        public void clear() {

            HashMap.this.clear();

        }

    }

 

    /**

     * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,

     * serialize it).

     *

     * @serialData The <i>capacity</i> of the HashMap (the length of the

     *             bucket array) is emitted (int), followed by the

     *             <i>size</i> (an int, the number of key-value

     *             mappings), followed by the key (Object) and value (Object)

     *             for each key-value mapping.  The key-value mappings are

     *             emitted in no particular order.

     */

    private void writeObject(java.io.ObjectOutputStream s)

        throws IOException

    {

        // Write out the threshold, loadfactor, and any hidden stuff

        s.defaultWriteObject();

 

        // Write out number of buckets

        if (table==EMPTY_TABLE) {

            s.writeInt(roundUpToPowerOf2(threshold));

        } else {

           s.writeInt(table.length);

        }

 

        // Write out size (number of Mappings)

        s.writeInt(size);

 

        // Write out keys and values (alternating)

        if (size > 0) {

            for(Map.Entry<K,V> e : entrySet0()) {

                s.writeObject(e.getKey());

                s.writeObject(e.getValue());

            }

        }

    }

 

    private static final long serialVersionUID = 362498820763181265L;

 

    /**

     * Reconstitute the {@code HashMap} instance from a stream (i.e.,

     * deserialize it).

     */

    private void readObject(java.io.ObjectInputStream s)

         throws IOException, ClassNotFoundException

    {

        // Read in the threshold (ignored), loadfactor, and any hidden stuff

        s.defaultReadObject();

        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {

            throw new InvalidObjectException("Illegal load factor: " +

                                               loadFactor);

        }

 

        // set other fields that need values

        table = (Entry<K,V>[]) EMPTY_TABLE;

 

        // Read in number of buckets

        s.readInt(); // ignored.

 

        // Read number of mappings

        int mappings = s.readInt();

        if (mappings < 0)

            throw new InvalidObjectException("Illegal mappings count: " +

                                               mappings);

 

        // capacity chosen by number of mappings and desired load (if >= 0.25)

        int capacity = (int) Math.min(

                    mappings * Math.min(1 / loadFactor, 4.0f),

                    // we have limits...

                    HashMap.MAXIMUM_CAPACITY);

 

        // allocate the bucket array;

        if (mappings > 0) {

            inflateTable(capacity);

        } else {

            threshold = capacity;

        }

 

        init();  // Give subclass a chance to do its thing.

 

        // Read the keys and values, and put the mappings in the HashMap

        for (int i = 0; i < mappings; i++) {

            K key = (K) s.readObject();

            V value = (V) s.readObject();

            putForCreate(key, value);

        }

    }

 

    // These methods are used when serializing HashSets

    int   capacity()     { return table.length; }

    float loadFactor()   { return loadFactor;   }

}

 

分享到:
评论

相关推荐

    HashMap分析

    JDK HashMap源码粗略分析 根据10个问题进行阅读探讨

    java HashMap原理分析

    Java HashMap原理分析 Java HashMap是一种基于哈希表的数据结构,它的存储原理是通过将Key-Value对存储在一个数组中,每个数组元素是一个链表,链表中的每个元素是一个Entry对象,Entry对象包含了Key、Value和指向...

    hashMap存储分析

    hashMap存储分析hashMap存储分析

    HashMap源码分析

    HashMap 是 Java 中最常用的集合类之一,它是基于哈希表实现的,提供了高效的数据存取功能。HashMap 的核心原理是将键(key)通过哈希函数转化为数组索引,然后将键值对(key-value pair)存储在数组的对应位置。...

    hashmap实现原理

    哈希映射(HashMap)是Java编程语言中广泛使用的数据结构之一,主要提供键值对的存储和查找功能。HashMap的实现基于哈希表的概念,它通过计算对象的哈希码来快速定位数据,从而实现了O(1)的平均时间复杂度。在深入...

    hashmap面试题_hashmap_

    面试中,可能会被问及HashMap的性能优化、内存占用分析、以及在特定场景下的选择,如并发环境、内存敏感的应用等。 总结,HashMap是Java编程中的基础工具,掌握其工作原理和常见面试题,不仅能帮助我们应对面试,更...

    面试必考之HashMap源码分析与实现

    面试中,HashMap的源码分析与实现是一个常见的考察点,因为它涉及到数据结构、并发处理和性能优化等多个核心领域。本篇文章将深入探讨HashMap的内部工作原理、关键特性以及其在实际应用中的考量因素。 HashMap基于...

    重载toString实现JS HashMap分析

    用过Java的都知道,里面有个功能强大的数据结构——HashMap,它能提供键与值的对应访问。不过熟悉JS的朋友也会说,JS里面到处都是hashmap,因为每个对象都提供了map[key]的访问形式。

    HashMap导致CPU100% 的分析

    HashMap导致CPU100% 的分析

    HashMap源码分析-思维导图.xmind

    hashmap的原理啊思想。

    HashMap与HashTable的区别(含源码分析)

    在Java编程语言中,`HashMap`和`HashTable`都是实现键值对存储的数据结构,但它们之间存在一些显著的区别,这些区别主要体现在线程安全性、性能、null值处理以及一些方法特性上。以下是对这两个类的详细分析: 1. ...

    HashMap类.rar

    通过分析源码,开发者可以深入理解哈希表的工作原理,学习如何在易语言中实现高效的数据结构,这对于提升程序性能和优化内存管理至关重要。同时,这也为自定义数据结构或实现其他哈希表相关的功能提供了基础。

    比较分析Vector、ArrayList和hashtable hashmap数据结构

    比较分析Vector、ArrayList和hashtable hashmap数据结构

    hashMap基本工作原理,图解分析,基础Map集合

    hashMap基本工作原理,图解分析,基础Map集合

    1.面试必考之HashMap源码分析与实现 伸缩性角度看HashMap的不足

    1.面试必考之HashMap源码分析与实现 伸缩性角度看HashMap的不足

Global site tag (gtag.js) - Google Analytics