简单地说,过载是外部请求对系统的访问量突然激增,造成请求堆积,服务不可用,最终导致系统崩溃。本文主要分析引入Cache可能造成的服务过载,并讨论相关的预防、恢复策略。Cache在现代系统中使用广泛,由此引入的服务过载隐患无处不在,但却非常隐蔽,容易被忽视。本文希望能为开发者在设计和编写相关类型应用,以及服务过载发生处理时能够有章可循。
一个服务过载案例
本文讨论的案例是指存在正常调用关系的两个系统(假设调用方为A系统,服务方为B系统),A系统对B系统的访问突然超出B系统的承受能力,造成B系统崩溃。造成服务过载的原因很多,这里分析的是严重依赖Cache的系统服务过载。首先来看一种包含Cache的体系结构(如下图所示)。
A系统依赖B系统的读服务,A系统是60台机器组成的集群,B系统是6台机器组成的集群,之所以6台机器能够扛住60台机器的访问,是因为A系统并不是每次都访问B,而是首先请求Cache,只有Cache的相应数据失效时才会请求B。
这正是Cache存在的意义,它让B系统节省了大量机器;如果没有Cache,B系统不得不组成60台机器的集群,如果A也同时依赖除B系统外的另一个系统(假设为C系统)呢?那么C系统也要60台机器,放大的流量将很快耗尽公司的资源。
然而Cache的引入也不是十全十美的,这个结构中如果Cache发生问题,全部的流量将流向依赖方,造成流量激增,从而引发依赖系统的过载。
回到A和B的架构,造成服务过载的原因至少有下面三种:
- B系统的前置代理发生故障或者其他原因造成B系统暂时不可用,等B系统系统服务恢复时,其流量将远远超过正常值。
- Cache系统故障,A系统的流量将全部流到B系统,造成B系统过载。
- Cache故障恢复,但这时Cache为空,Cache瞬间命中率为0,相当于Cache被击穿,造成B系统过载。
第一个原因不太好理解,为什么B系统恢复后流量会猛增呢?主要原因就是缓存的超时时间。当有数据超时的时候,A系统会访问B系统,但是这时候B系统偏偏故障不可用,那么这个数据只好超时,等发现B系统恢复时,发现缓存里的B系统数据已经都超时了,都成了旧数据,这时当然所有的请求就打到了B。
下文主要介绍服务过载的预防和发生后的一些补救方法,以预防为主,从调用方和服务方的视角阐述一些可行方案。
服务过载的预防
所谓Client端指的就是上文结构中的A系统,相对于B系统,A系统就是B系统的Client,B系统相当于Server。
Client端的方案
针对上文阐述的造成服务过载的三个原因:B系统故障恢复、Cache故障、Cache故障恢复,我们看看A系统有哪些方案可以应对。
合理使用Cache应对B系统宕机
一般情况下,Cache的每个Key除了对应Value,还对应一个过期时间T,在T内,get操作直接在Cache中拿到Key对应Value并返回。但是在T到达时,get操作主要有五种模式:
1. 基于超时的简单(stupid)模式
在T到达后,任何线程get操作发现Cache中的Key和对应Value将被清除或标记为不可用,get操作将发起调用远程服务获取Key对应的Value,并更新写回Cache,然后get操作返回新值;如果远程获取Key-Value失败,则get抛出异常。
为了便于理解,举一个码头工人取货的例子:5个工人(线程)去港口取同样Key的货(get),发现货已经过期被扔掉了,这时5个工人各自分别去对岸取新货,然后返回。
2. 基于超时的常规模式
在T到达后,Cache中的Key和对应Value将被清除或标记为不可用,get操作将调用远程服务获取Key对应的Value,并更新写回Cache;此时,如果另一个线程发现Key和Value已经不可用,get操作还需要判断有没有其他线程发起了远程调用,如果有,那么自己就等待,直到那个线程远程获取操作成功,Cache中得Key变得可用,get操作返回新的Value。如果远程获取操作失败,则get操作抛出异常,不会返回任何Value。
还是码头工人的例子:5个工人(线程)去港口取同样Key的货(get),发现货已经过期被扔掉了,那么只需派出一个人去对岸取货,其他四个人在港口等待即可,而不用5个人全去。
基于超时的简单模式和常规模式区别在于对于同一个超时的Key,前者每个get线程一旦发现Key不存在,则发起远程调用获取值;而后者每个get线程发现Key不存在,则还要判断当前是否有其他线程已经发起了远程调用操作获取新值,如果有,自己就简单的等待即可。
显然基于超时的常规模式比基于超时的简单模式更加优化,减少了超时时并发访问后端的调用量。
实现基于超时的常规模式就需要用到经典的Double-checked locking惯用法了。
3. 基于刷新的简单(stupid)模式
在T到达后,Cache中的Key和相应Value不动,但是如果有线程调用get操作,将触发refresh操作,根据get和refresh的同步关系,又分为两种模式:
- 同步模式:任何线程发现Key过期,都触发一次refresh操作,get操作等待refresh操作结束,refresh结束后,get操作返回当前Cache中Key对应的Value。注意refresh操作结束并不意味着refresh成功,还可能抛了异常,没有更新Cache,但是get操作不管,get操作返回的值可能是旧值。
- 异步模式:任何线程发现Key过期,都触发一次refresh操作,get操作触发refresh操作,不等refresh完成,直接返回Cache中的旧值。
举上面码头工人的例子说明基于刷新的常规模式:这次还是5工人去港口取货,这时货都在,但是已经旧了,这时5个工人有两种选择:
- 5个人各自去远程取新货,如果取货失败,则拿着旧货返回(同步模式)
- 5个人各自通知5个雇佣工去取新货,5个工人拿着旧货先回(异步模式)
4. 基于刷新的常规模式
在T到达后,Cache中的Key和相应Value都不会被清除,而是被标记为旧数据,如果有线程调用get操作,将触发refresh更新操作,根据get和refresh的同步关系,又分为两种模式:
- 同步模式:get操作等待refresh操作结束,refresh结束后,get操作返回当前Cache中Key对应的Value,注意:refresh操作结束并不意味着refresh成功,还可能抛了异常,没有更新Cache,但是get操作不管,get操作返回的值可能是旧值。如果其他线程进行get操作,Key已经过期,并且发现有线程触发了refresh操作,则自己不等refresh完成直接返回旧值。
- 异步模式:get操作触发refresh操作,不等refresh完成,直接返回Cache中的旧值。如果其他线程进行get操作,发现Key已经过期,并且发现有线程触发了refresh操作,则自己不等refresh完成直接返回旧值。
再举上面码头工人的例子说明基于刷新的常规模式:这次还是5工人去港口取货,这时货都在,但是已经旧了,这时5个工人有两种选择:
- 派一个人去远方港口取新货,其余4个人拿着旧货先回(同步模式)。
- 5个人通知一个雇佣工去远方取新货,5个人都拿着旧货先回(异步模式)。
基于刷新的简单模式和基于刷新的常规模式区别就在于取数线程之间能否感知当前数据是否正处在刷新状态,因为基于刷新的简单模式中取数线程无法感知当前过期数据是否正处在刷新状态,所以每个取数线程都会触发一个刷新操作,造成一定的线程资源浪费。
而基于超时的常规模式和基于刷新的常规模式区别在于前者过期数据将不能对外访问,所以一旦数据过期,各线程要么拿到数据,要么抛出异常;后者过期数据可以对外访问,所以一旦数据过期,各线程要么拿到新数据,要么拿到旧数据。
5. 基于刷新的续费模式
该模式和基于刷新的常规模式唯一的区别在于refresh操作超时或失败的处理上。在基于刷新的常规模式中,refresh操作超时或失败时抛出异常,Cache中的相应Key-Value还是旧值,这样下一个get操作到来时又会触发一次refresh操作。
在基于刷新的续费模式中,如果refresh操作失败,那么refresh将把旧值当成新值返回,这样就相当于旧值又被续费了T时间,后续T时间内get操作将取到这个续费的旧值而不会触发refresh操作。
基于刷新的续费模式也像常规模式那样分为同步模式和异步模式,不再赘述。
下面讨论这5种Cache get模式在服务过载发生时的表现,首先假设如下:
- 假设A系统的访问量为每分钟M次。
- 假设Cache能存Key为C个,并且Key空间有N个。
- 假设正常状态下,B系统访问量为每分钟W次,显然W\<\<M。
这时因为某种原因,比如B长时间故障,造成Cache中得Key全部过期,B系统这时从故障中恢复,五种get模式分析表现分析如下:
- 在基于超时和刷新的简单模式中,B系统的瞬间流量将达到和A的瞬时流量M大体等同,相当于Cache被击穿。这就发生了服务过载,这时刚刚恢复的B系统将肯定会被大流量压垮。
- 在基于超时和刷新的常规模式中,B系统的瞬间流量将和Cache中Key空间N大体等同。这时是否发生服务过载,就要看Key空间N是否超过B系统的流量上限了。
- 在基于刷新的续费模式中,B系统的瞬间流量为W,和正常情况相同而不会发生服务过载。实际上,在基于刷新的续费模式中,不存在Cache Key全部过期的情况,就算把B系统永久性地干掉,A系统的Cache也会基于旧值长久的平稳运行。
第3点,B系统不会发生服务过载的主要原因是基于刷新的续费模式下不会出现chache中的Key全部长时间过期的情况,即使B系统长时间不可用,基于刷新的续费模式也会在一个过期周期内把旧值当成新值继续使用。所以当B系统恢复时,A系统的Cache都处在正常工作状态。
从B系统的角度看,能够抵抗服务过载的基于刷新的续费模式最优。
从A系统的角度看,由于一般情况下A系统是一个高访问量的在线web应用,这种应用最讨厌的一个词就是“线程等待”,因此基于刷新的各种异步模式较优。
综合考虑,基于刷新的异步续费模式是首选。
然而凡是有利就有弊,有两点需要注意的地方:
- 基于刷新模式最大的缺点是Key-Value一旦放入Cache就不会被清除,每次更新也是新值覆盖旧值,JVM GC永远无法对其进行垃圾收集,而基于超时的模式中,Key-Value超时后如果新的访问没有到来,内存是可以被GC垃圾回收的。所以如果你使用的是寸土寸金的本地内存做Cache就要小心了。
- 基于刷新的续费模式需要做好监控,不然有可能Cache中的值已经和真实的值相差很远了,应用还以为是新值而使用。
关于具体的Cache,来自Google的Guava本地缓存库支持上文的第二种、第四种和第五种get操作模式。
但是对于Redis等分布式缓存,只提供原始的get、set方法,而提供的get仅仅是获取,与上文提到的五种get操作模式不是一个概念。开发者想用这五种get操作模式的话不得不自己封装和实现。
五种get操作模式中,基于超时和刷新的简单模式是实现起来最简单的模式,但遗憾的是这两种模式对服务过载完全无免疫力,这可能也是服务过载在大量依赖缓存的系统中频繁发生的一个重要原因吧。
本文之所以把第1、3种模式称为stupid模式,是想强调这种模式应该尽量避免,Guava里面根本没有这种模式,而Redis只提供简单的读写操作,很容易就把系统实现成了这种方式。
应对分布式Cache宕机
如果是Cache直接挂了,那么就算是基于刷新的异步续费模式也无能为力了。这时A系统铁定无法对Cache进行存取操作,只能将流量完全打到B系统,B系统面对服务过载在劫难逃......
本节讨论的预防Cache宕机仅限于分布式Cache,因为本地Cache一般和A系统应用共享内存和进程,本地Cache挂了A系统也挂了,不会出现本地Cache挂了而A系统应用正常的情况。
首先,A系统请求线程检查分布式Cache状态,如果无应答则说明分布式Cache挂了,则转向请求B系统,这样一来大流量将压垮B系统。这时可选的方案如下:
- A系统的当前线程不请求B系统,而是打个日志并设置一个默认值。
- A系统的当前线程按照一定概率决定是否请求B系统。
- A系统的当前线程检查B系统运行情况,如果良好则请求B系统。
方案1最简单,A系统知道如果没有Cache,B系统可能扛不住自己的全部流量,索性不请求B系统,等待Cache恢复。但这时B系统利用率为0,显然不是最优方案,而且当请求的Value不容易设置默认值时,这个方案就不行了。
方案2可以让一部分线程请求B系统,这部分请求肯定能被B系统hold住。可以保守的设置这个概率 u =(B系统的平均流量)/(A系统的峰值流量)
方案3是一种更为智能的方案,如果B系统运行良好,当前线程请求;如果B系统过载,则不请求,这样A系统将让B系统处于一种宕机与不宕机的临界状态,最大限度挖掘B系统性能。这种方案要求B系统提供一个性能评估接口返回Yes和No,Yes表示B系统良好,可以请求;No表示B系统情况不妙,不要请求。这个接口将被频繁调用,必须高效。
方案3的关键在于如何评估一个系统的运行状况。一个系统中当前主机的性能参数有CPU负载、内存使用率、Swap使用率、GC频率和GC时间、各个接口平均响应时间等,性能评估接口需要根据这些参数返回Yes或者No,是不是机器学习里的二分类问题?
相关推荐
综上所述,《Web应用中的海量数据访问缓存技术》不仅提供了对现有缓存技术的全面概述,更重要的是,它创新性地提出了一种整合线程池、连接池和数据Cache技术的框架模型,有效解决了Web应用在处理海量数据时面临的...
此外,利用案例研究,如分析亚马逊、谷歌等公司的数据中心如何处理海量请求,也能激发学生的兴趣,深化对这两个概念的理解。 在课堂讨论中,鼓励学生提出自己的观点和解决方案,促进他们批判性思维的发展。教师可以...
分布式文件系统在实践中有着广泛的应用,以下是一些典型的分布式文件系统案例: - **GPFS**: IBM开发的高性能并行文件系统,常用于大型集群环境中。 - **Lustre**: 广泛应用于高性能计算领域的并行文件系统。 - **...
#### 十一、案例研究 **13.1 概要** - 提供具体的案例分析,展示HBase在实际应用中的使用场景和解决方案。 **13.2 Schema设计** - 展示如何针对特定的应用场景进行合理的Schema设计。 **13.3 性能/故障排除** ...
内容概要:本文详细介绍了如何使用COMSOL Multiphysics进行金属纳米盘的散射、消光和吸收截面的计算。首先,通过几何建模创建一个直径80nm、厚度20nm的金纳米盘,并设置了精确的材料参数(如Drude模型),确保模拟的准确性。接着,选择了电磁波频域作为物理场,配置了合适的边界条件(如散射边界条件和端口激发),并进行了精细的网格划分,特别是在纳米盘边缘加密网格以提高计算精度。然后,利用后处理脚本提取了散射、消光和吸收截面的数据,提供了具体的计算公式和注意事项。最后,强调了验证结果的重要性和一些常见的错误避免方法,如检查能量守恒和调整网格密度。 适合人群:从事纳米光子学研究的科研人员和技术爱好者,尤其是对COMSOL Multiphysics有一定基础的用户。 使用场景及目标:适用于需要精确计算金属纳米盘光学特性的研究人员,帮助他们理解和掌握COMSOL中相关参数的设置和优化方法,从而更好地进行科学研究和发表高质量论文。 其他说明:文中还提供了一个详细的录屏教程,涵盖了从建模到后处理的完整流程,方便用户跟随操作。同时,提醒用户注意单位转换和数据归一化等问题,以确保计算结果的正确性。
DL/T 645-2007 的规定帧编写读写函数,对收到原始数据进行解码
餐饮行业: 店外引流:在餐厅门口放置爆店码,顾客进店前碰一碰,就能了解今日特色菜品、优惠套餐等信息,吸引顾客进店消费。 店内互动:在餐桌等位置设置爆店码,顾客用餐过程中碰一碰,可参与抽奖活动、领取餐后优惠券,或跳转到电子菜单进行加菜,增加顾客的用餐乐趣和二次消费几率。 零售店铺: 服装门店:在橱窗展示新品时,贴上爆店码,顾客碰一碰可查看模特穿搭视频、获取商品详情和尺码信息,以及该商品的会员专属折扣。在试衣镜旁放置爆店码,顾客碰一碰能查看搭配建议、关注公众号或加入会员,提升引流转粉效率。 便利店:在收银台设置爆店码,顾客付款时碰一碰,可领取满减优惠券、了解会员积分规则,或获取当季新品推荐,促进顾客当场购买或成为会员,提升销售额和顾客忠诚度。 线下活动: 展会:在展会入口、展位等位置放置爆店码,参与者碰一碰就能快速获取展会详情、参展商名单、活动议程、展位地图等信息,方便活动的推广和组织,同时也能收集参与者的信息,为后续营销做准备。 促销活动:在商场中庭、店铺门口等举办促销活动时,使用爆店码。顾客碰一碰可了解活动规则、参与方式,还能直接领取电子优惠券或参与线上互动游戏,增加活动的参与度和传播度。 服务行业: 美业:在美甲美睫店的服务台、镜子旁等地方设置爆店码,顾客碰一碰可自动引导添加美业小助理微信,方便预约下次服务,也可获取美容护肤知识、会员专属优惠等信息。 健身行业:在健身房的前台、更衣室门口、器械旁放置爆店码。顾客碰一碰能了解课程安排、教练介绍,还可参与打卡活动,分享训练成果到社交平台,领取健身优惠券或小礼品,吸引更多潜在顾客。 旅游行业: 景区:在景区入口、景点打卡处等设置爆店码,游客碰一碰可获取景区地图、景点介绍、语音讲解,还能领取景区纪念品优惠券或参与线上互动活动,提升游客的旅游体验和景区的知名度。 酒店:在酒店大堂、客房门口、餐厅等位置放置爆店码。客人碰一碰可了解酒店
MIL-STD-454N.PDF
内容概要:本文提出了一种基于标准视频编解码器和优化特征平面的高效压缩方法,用于处理3D高斯点阵(3D Gaussian Splatting)。该方法通过引入统一架构将点云数据和特征平面结合,利用2D特征平面实现连续空间表示,并通过频率域熵建模和通道位分配优化压缩性能。实验结果表明,该方法在显著减少存储需求的同时保持了高质量的渲染效果,特别是在“自行车”场景中实现了146倍的压缩率而图像质量几乎无损。此外,该模型与现有3DGS渲染管道无缝集成,维持了相似的渲染速度。 适合人群:对3D场景压缩和渲染技术感兴趣的计算机视觉研究人员及工程师,特别是关注实时应用和移动设备性能优化的专业人士。 使用场景及目标:①需要在资源受限环境中(如移动设备或头戴显示器)进行高效3D场景表示的应用开发者;②寻求在不牺牲渲染质量的前提下大幅降低存储和传输成本的技术团队;③希望利用标准视频编解码器实现快速硬件解码的研究者。 其他说明:该研究不仅适用于特定的数据集,还为未来3D表示技术的发展提供了关键见解,促进了更高效的3D压缩技术发展。实验验证了该方法的有效性,展示了显著的存储节省和视觉保真度。
内容概要:本文详细介绍了超声波焊接技术在汽车门板塑焊机中的应用,涵盖了从源码程序到硬件加工的各个方面。首先强调了超声波焊接在汽车制造中的重要性,然后展示了控制板和显示板的源码程序,包括初始化代码、PID控制算法、频率跟踪算法等。此外,还讨论了超声波换能器、手柄外壳、铝件和焊头的加工技术及其具体要求。文中提供了多个代码示例,如STM32的PWM配置、DMA传输、PID算法实现等,展示了如何通过软件和硬件的紧密结合实现高效的超声波焊接。 适合人群:从事汽车制造业、电子工程、嵌入式开发等相关领域的技术人员,尤其是对超声波焊接技术和嵌入式系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解超声波焊接技术原理和技术实现的读者,帮助他们掌握从源码编写到硬件加工的全流程知识,提高焊接系统的稳定性和可靠性。 其他说明:文章不仅提供了详细的代码示例,还分享了许多实践经验,如频率跟踪算法、温度补偿、硬件互锁机制等,有助于读者更好地理解和应用这些技术。
可配置阶数和位宽的级联型IIR滤波器(具体代码和工程私聊qq947336191)
程序设计语言基础JAVAWEB_Java的常用工具类[2025网盘版.备考复习]
内容概要:本文详细介绍了Halcon与C#联合开发的一个稳定版工业视觉框架,涵盖环境配置、图像处理流水线设计、异常处理、内存管理和算法模块化等方面的内容。首先,文章强调了环境配置的重要性,确保Halcon的runtime版本与开发环境一致,避免常见的dll版本不匹配问题。接着,描述了图像处理流水线的设计,采用了Task+async/await的方式提高效率,并通过状态机实现流程引擎,使配置更加灵活。此外,文章深入探讨了内存管理,提供了多个实例,如使用using语句确保HRegion对象正确释放,以及通过HalconMemoryKiller类防止内存泄漏。异常处理方面,文章展示了如何将Halcon的错误码转化为易读的信息,并实现了全局异常捕获和日志记录。最后,文章提到了框架的实际应用场景,如PCB板检测,并分享了许多实战经验和技巧,如相机断线自动重连、图像显示控件的手势操作等。 适合人群:具备一定编程基础并希望深入了解Halcon与C#联合开发的工程师和技术爱好者。 使用场景及目标:适用于工业视觉项目的开发,旨在帮助开发者构建高效稳定的图像处理系统,提高系统的鲁棒性和维护性。 其他说明:文中提供的代码片段和实战经验对于解决常见问题非常有价值,尤其是内存管理和异常处理方面的最佳实践。
内容概要:本文详细介绍了基于三菱FX1N-30MR PLC和威纶TK6070触摸屏的恒压供水系统的实战应用。主要内容涵盖系统的关键功能如定时锁定、模式切换、PID控制、故障联锁以及小泵控制等。文中不仅提供了具体的梯形图代码片段,还分享了许多实际调试经验和注意事项。例如,定时锁定功能通过M384和M385实现,确保系统稳定运行;模式切换由M400-M403控制,可在触摸屏上进行选择;PID控制可以选择变频器或3A模块,后者提供更平稳的压力曲线;故障联锁机制能够在变频器故障时自动切换到工频泵,保障供水安全;小泵控制则用于应对压力波动,保持管网压力稳定。 适用人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和触摸屏应用有一定基础的人群。 使用场景及目标:适用于需要理解和实施恒压供水系统的工程项目。目标是帮助读者掌握三菱PLC和威纶触摸屏的具体应用技巧,提高系统的可靠性和效率。 其他说明:文中提到的一些特殊操作和调试技巧,如通过D129输入4016解锁系统,以及在触摸屏上设置隐藏菜单等,有助于解决实际工程中的常见问题。此外,文章强调了硬件配置和通信设置的重要性,提醒读者在实际操作中避免常见的错误。
内容概要:本文详细介绍了基于51单片机的全自动洗衣机系统的设计与实现。系统支持手动和自动两种操作模式,能够灵活调整水位、洗涤时间和漂洗次数等参数。文中提供了详细的Proteus 8仿真图、C语言源码及Hex文件的使用说明。硬件方面,采用STC89C52作为主控芯片,搭配LCD1602显示屏、按键阵列、直流电机驱动模块、水位传感器和门磁开关等组件。软件部分涵盖了按键处理、电机控制、水位检测等功能模块的具体实现方法。此外,还讨论了一些常见的调试技巧和注意事项。 适合人群:具有一定单片机基础知识的学习者、电子爱好者、嵌入式系统开发者。 使用场景及目标:适用于希望深入了解51单片机及其外围设备的应用开发,特别是对于嵌入式控制系统感兴趣的读者。通过本项目的实践,读者可以掌握单片机的基本编程技能,学会如何构建和调试小型自动化系统。 其他说明:文中提供的代码和仿真图可以帮助初学者更好地理解和掌握相关知识点。同时,针对可能出现的问题给出了实用的解决方案,如按键消抖、电机驱动保护等。
Java在线教育学习平台LW PPT
系统名称:基于SSM实现的小说网站 技术栈:SSM框架、MYSQL数据库、JS语言、B/S架构 系统功能:前台界面功能包括站内信息查看(通过作者、小说名、小说类型查找小说)、用户注册、小说列表查看(按章节查看并阅读,用户登录后收藏,付费或免费查看)、在线支付、排行榜(热门小说、点击率);后台功能包括用户管理(管理员和注册用户)、站内信息管理、小说类别管理、小说信息管理、章节信息管理、支付信息管理。 摘要:简单而言信息化就是为了人们的生活便利所带来的新时代的东西,有了淘宝、京东,我们可以进行网购漂亮的衣服;有了快手、抖音我们可以真实的感受主播给我们带来最真实的货物;有了美团我们可以在家就吃到全城的美食。这就是信息化带给我们的福利,别看一个小小的APP或者WEB应用,它能够解决的是社会上的某一类问题。企业资源计划ERP这类软件可能有很多人都听到过,熟悉它的人都知道一个小小的TOB应用软件可以指挥数以万计的企业员工有条不紊的进行着企业各项的生产任务。可想而知,信息化软件的力量足可以撼动整个企业乃至整个行业的情况。此次我们的设计所做的应用也是根据现实生活当中的需求来进行针对性的功能解决的,所有的业务也好,功能啥的都是根据实际的需求设计而来。各种各样应运而生的信息化软件都是为了解决生活当中的问题的,我们也不例外,就是为了能够解决这样或者那样的问题才进行的设计。随着近几年的疫情不断发展,居家办公的情况更多出现在人们的生活当中,那么一些单调无味的工作和生活就影响着人们的心情。小说的需求场景也就越来越多了,人们的娱乐方式也由此变得更加丰富些。电子小说的出现可以大概率的帮助人们随时随地进行小说的阅读,同时还能够搜寻出自己喜欢小说。
内容概要:本文详细介绍了基于模型预测控制(MPC)的异步电机电流环改进仿真项目。首先,文章阐述了双闭环矢量控制框架的整体架构,即外层采用PI控制的速度环和内层采用MPC控制的电流环。接着,深入探讨了电机模型的核心代码,包括磁链观测器的简化处理以及预测控制器的代价函数设计。文中还分享了多个实际调试过程中遇到的技术挑战及其解决方案,如离散化方法的选择、开关频率惩罚项的设定、预测步长的影响等。此外,作者通过实验数据展示了MPC相较于传统PI控制在动态响应、电流跟踪精度等方面的显著优势。 适合人群:电气工程专业学生、从事电机控制系统研究的研发人员和技术爱好者。 使用场景及目标:适用于希望深入了解并掌握异步电机模型预测电流控制技术的研究人员。主要目标是通过理论与实践相结合的方式,提高对MPC的理解和应用能力,特别是在电流环控制方面的优化。 其他说明:文章不仅提供了详细的数学公式和代码实现,还附带了一些实用的小技巧和注意事项,有助于读者更好地理解和复现相关研究成果。同时,文中引用了多篇权威文献作为参考,进一步增强了内容的专业性和可信度。
lvgl-8.3.0 在github下载了好久才下载下来,希望方便大家使用。
兰州石化职业技术大学岗位实习手册(学生)印9200册.doc