Java线程池使用说明
一、简介
线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的。在jdk1.5之后这一情况有了很大的改观。Jdk1.5之后加入了java.util.concurrent包,这个包中主要介绍java中线程以及线程池的使用。为我们在开发中处理线程的问题提供了非常大的帮助。
二、线程池
线程池的作用:
1.线程池作用就是限制系统中执行线程的数量。
2.根据系统的环境情况,可以自动 或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕, 再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以 开始运行了;否则进入等待队列。
为什么要用线程池:
1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。
比较重要的几个类:
ExecutorService |
真正的线程池接口。 |
ScheduledExecutorService |
能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。 |
ThreadPoolExecutor |
ExecutorService的默认实现。 |
ScheduledThreadPoolExecutor |
继承ThreadPoolExecutor的ScheduledExecutorService接口实现,周期性任务调度的类实现。 |
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。
1. newSingleThreadExecutor
创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
2.newFixedThreadPool
创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
3. newCachedThreadPool
创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
4.newScheduledThreadPool
创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
实例:
1.newSingleThreadExecutor
MyThread.java
public class MyThread extends Thread { @Override public void run() { System.out.println(Thread.currentThread().getName() + "正在执行...."); } }
TestSingleThreadExecutor.java
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class TestSingleThreadExecutor { public static void main(String[] args) { // 创建一个可重用固定线程数的线程池 ExecutorService pool = Executors.newSingleThreadExecutor(); // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口 Thread t1 = new MyThread(); Thread t2 = new MyThread(); Thread t3 = new MyThread(); Thread t4 = new MyThread(); Thread t5 = new MyThread(); // 将线程放入池中进行执行 pool.execute(t1); pool.execute(t2); pool.execute(t3); pool.execute(t4); pool.execute(t5); // 关闭线程池 pool.shutdown(); } }
输出结果
pool-1-thread-1正在执行.... pool-1-thread-1正在执行.... pool-1-thread-1正在执行.... pool-1-thread-1正在执行.... pool-1-thread-1正在执行....
2.newFixedThreadPool
TestFixedThreadPool.Java
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class TestFixedThreadPool { public static void main(String[] args) { // 创建一个可重用固定线程数的线程池 ExecutorService pool = Executors.newFixedThreadPool(2); // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口 Thread t1 = new MyThread(); Thread t2 = new MyThread(); Thread t3 = new MyThread(); Thread t4 = new MyThread(); Thread t5 = new MyThread(); // 将线程放入池中进行执行 pool.execute(t1); pool.execute(t2); pool.execute(t3); pool.execute(t4); pool.execute(t5); // 关闭线程池 pool.shutdown(); } }
输出结果
pool-1-thread-1正在执行.... pool-1-thread-2正在执行.... pool-1-thread-2正在执行.... pool-1-thread-2正在执行.... pool-1-thread-1正在执行....
3.newCachedThreadPool
TestCachedThreadPool.java
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class TestCachedThreadPool { public static void main(String[] args) { // 创建一个可重用固定线程数的线程池 ExecutorService pool = Executors.newCachedThreadPool(); // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口 Thread t1 = new MyThread(); Thread t2 = new MyThread(); Thread t3 = new MyThread(); Thread t4 = new MyThread(); Thread t5 = new MyThread(); // 将线程放入池中进行执行 pool.execute(t1); pool.execute(t2); pool.execute(t3); pool.execute(t4); pool.execute(t5); // 关闭线程池 pool.shutdown(); } }
输出结果
pool-1-thread-2正在执行.... pool-1-thread-5正在执行.... pool-1-thread-4正在执行.... pool-1-thread-3正在执行.... pool-1-thread-1正在执行....
4.newScheduledThreadPool
TestScheduledThreadPoolExecutor.java
import java.util.concurrent.ScheduledThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class TestScheduledThreadPoolExecutor { public static void main(String[] args) { ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1); exec.scheduleAtFixedRate(new Runnable() { @Override public void run() { System.out.println("================"); } }, 1000, 5000, TimeUnit.MILLISECONDS);// 每隔一段时间就触发异常 exec.scheduleAtFixedRate(new Runnable() { @Override public void run() { System.out.println(System.nanoTime()); } }, 1000, 2000, TimeUnit.MILLISECONDS);// 每隔一段时间打印系统时间,证明两者是互不影响的 } }
输出结果
================ 141560767081542 141562778328398 141564766562092 ================ 141566766680408 141568766746551 ================ 141570767448464 141572766912478 141574767142838 ================ 141576767029084 141578767082112
三、ThreadPoolExecutor详解
ThreadPoolExecutor的完整构造方法是:
/** * Creates a new {@code ThreadPoolExecutor} with the given initial * parameters. * * @param corePoolSize the number of threads to keep in the pool, even * if they are idle, unless {@code allowCoreThreadTimeOut} is set * @param maximumPoolSize the maximum number of threads to allow in the * pool * @param keepAliveTime when the number of threads is greater than * the core, this is the maximum time that excess idle threads * will wait for new tasks before terminating. * @param unit the time unit for the {@code keepAliveTime} argument * @param workQueue the queue to use for holding tasks before they are * executed. This queue will hold only the {@code Runnable} * tasks submitted by the {@code execute} method. * @param threadFactory the factory to use when the executor * creates a new thread * @param handler the handler to use when execution is blocked * because the thread bounds and queue capacities are reached * @throws IllegalArgumentException if one of the following holds:<br> * {@code corePoolSize < 0}<br> * {@code keepAliveTime < 0}<br> * {@code maximumPoolSize <= 0}<br> * {@code maximumPoolSize < corePoolSize} * @throws NullPointerException if {@code workQueue} * or {@code threadFactory} or {@code handler} is null */ public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }corePoolSize - 池中所保存的线程数,包括空闲线程。
maximumPoolSize - 池中允许的最大线程数。
keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
unit - keepAliveTime 参数的时间单位。
workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute方法提交的 Runnable任务。
threadFactory - 执行程序创建新线程时使用的工厂。
handler - 由于超出线程范围和队列容量而使执行被阻塞时所使用的处理程序。
ThreadPoolExecutor是Executors类的底层实现。
相关推荐
标题中的“Java实现的线程池、消息队列功能”是指在Java编程中,如何利用编程技术实现线程池和消息队列这两种重要的并发处理机制。线程池和消息队列是解决多线程环境下资源管理和任务调度的有效手段,它们在高并发、...
本文将详细介绍线程池原理、使用场景及注意事项,以及阻塞队列的相关知识。 首先,线程池是一种基于池化思想管理线程的技术,它可以重用一组线程执行多个任务。线程池的工作原理是通过维护一定数量的工作线程,这些...
线程池和队列在IT领域中是两个非常重要的概念,尤其在多线程编程和并发处理中扮演着核心角色。它们各自有独特的特性和适用场景,理解它们的区别和使用场景对于优化系统性能至关重要。 首先,让我们从线程池开始。...
在Java中,`ExecutorService`接口是线程池的主要入口,它是`java.util.concurrent`包的一部分,提供了创建、管理和控制线程池的功能。 线程池的核心概念包括以下几点: 1. **工作队列(Work Queue)**:线程池内部...
在Java中,可以使用`java.util.Deque`接口的实现,例如`java.util.concurrent.LinkedBlockingDeque`,它支持双端插入和删除,可以作为线程池的工作队列。 - 在创建`ThreadPoolExecutor`时,可以通过传递`...
在Android中,我们通常使用`java.util.concurrent`包下的`ExecutorService`接口和其相关的类来创建线程池。 线程池的核心概念包括: 1. 工作线程(Worker Threads):线程池中的线程,负责执行任务。 2. 任务队列...
在Java编程中,"并发-线程池和阻塞队列"是两个核心概念,它们在多线程环境下处理任务调度和数据同步方面发挥着重要作用。线程池是一种管理线程资源的有效方式,而阻塞队列则常用于线程间通信和数据共享。 线程池...
Java线程池封装是Java并发编程中重要的一环,合理的线程池配置和封装能显著提升程序的性能和稳定性。理解线程池的工作原理,根据业务需求选择合适的参数,以及正确处理拒绝策略,都是实现高效并发处理的关键。在实际...
Java线程池是Java并发编程中的重要组成部分,它在多线程编程中扮演着至关重要的角色,有效地管理和调度线程资源,提高了程序的性能和稳定性。本资源包含了一个经典的Java线程池实现,适用于大型项目,能帮助开发者...
在本文中,我们将详细介绍Java线程池工作队列饱和策略的概念、原理和实现。 线程池(Thread Pool)是并行执行任务收集的实用工具。随着CPU引入适合于应用程序并行化的多核体系结构,线程池的作用正日益显现。通过...
在Java等编程语言中,已经提供了内置的线程池实现,如Java的Executor框架,它提供了一种便捷的方式来创建和管理线程池。通过这些高级抽象,开发者可以更加专注于业务逻辑的实现,而不必从零开始编写线程池的代码。 ...
总之,线程池和工作队列是实现高效并发编程的重要工具,尤其在处理大量并发请求或异步操作时,它们能显著提升程序的性能和稳定性。通过学习和实践`WQDemo`这个示例,你可以更深入地理解和掌握这一技术,并将其应用到...
自定义线程池虽然灵活,但可能存在效率和兼容性问题,因为没有利用Java标准库提供的高级特性,如线程优先级、工作队列策略、拒绝策略等。在实际应用中,通常推荐使用`ThreadPoolExecutor`,因为它提供了丰富的功能和...
在 Spring Boot 中使用 Java 线程池 ExecutorService 的讲解 Spring Boot 作为一个流行的 Java 框架,提供了许多便捷的功能来帮助开发者快速构建应用程序。其中之一就是使用 Java 线程池 ExecutorService 来管理...
本文将详细介绍一个基于Java实现的多线程文件上传系统,并结合队列管理技术来优化后台处理流程。该系统通过创建多个线程来并行处理客户端的文件上传请求,同时利用队列结构来协调任务的调度与执行。 #### 关键技术...
### 自定义实现Java线程池 #### 一、概述 在深入探讨自定义Java线程池之前,我们先简要回顾一下线程池的基本概念及其重要性。线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动...
本篇文章将深入探讨如何使用`java.util.concurrent` 实现线程池队列,以及其中的关键概念和技术。 线程池是一种线程使用模式,通过预先创建并维护一定数量的工作线程来避免频繁创建和销毁线程的开销。在Java中,`...
五、Android中的AsyncTask和线程池 Android自带的`AsyncTask`简化了短生命周期任务的异步执行,但它内部实际上使用了一个线程池。然而,对于大量或长生命周期的任务,直接使用`ExecutorService`和`...