- 浏览: 30619 次
- 性别:
- 来自: 北京
-
最新评论
-
saieuler:
mark一下,改天认真拜读
数学之美番外篇:平凡而又神奇的贝叶斯方法 -
tianxianyun:
兄弟,你的文章很详细,不错呦,我之前试过好几个,都不行
Weka下使用LibSVM的一点心得
文章列表
(九)文本分类问题的分类
- 博客分类:
- 文本分类入门
开始之前首先说说分类体系。回忆一下,分类体系是指事先确定的类别的层次结构以及文档与这些类别间的关系。
其中包含着两方面的内容:
一,类别之间的关系。一般来说类别之间的关系都是可以表示成树形结构,这意味着一个类有多个子类,而一个子类唯一的属于一个父类。这种类别体系很常用,却并不代表它在现实世界中也是符合常识的,举个例子,“临床心理学”这个类别应该即属于“临床医学”的范畴,同时也属于“心理学”,但在分类系统中却不便于使用这样的结构。想象一下,这相当于类别的层次结构是一个有环图,无论遍历还是今后类别的合并,比较,都会带来无数的麻烦。
二,文档与类别间的关系。一般来说,在分类系 ...
(八)中英文文本分类的异同
- 博客分类:
- 文本分类入门
从文本分类系统的处理流程来看,无论待分类的文本是中文还是英文,在训练阶段之前都要经过一个预处理的步骤,去除无用的信息,减少后续步骤的复杂度和计算负担。
对中文文本来说,首先要经历一个分词的过程,就是把连续的文字流切分成一个一个单独的词汇(因为词汇将作为训练阶段“特征”的最基本单位),例如原文是“中华人民共和国今天成立了”的文本就要被切分成“中华/人民/共和国/今天/成立/了”这样的形式。而对英文来说,没有这个步骤(更严格的说,并不是没有这个步骤,而是英文只需要通过空格和标点便很容易将一个一个独立的词从原文中区分出来)。中文分词的效果对文本分类系统的表现影响很大,因为在后面的流程中, ...
学习方法:使用样例(或称样本,训练集)来合成计算机程序的过程称为学习方法[22]。
监督学习:学习过程中使用的样例是由输入/输出对给出时,称为监督学习[22]。最典型的监督学习例子就是文本分类问题,训练集是 ...
(六)训练Part 3
- 博客分类:
- 文本分类入门
SVM算法
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。
SVM 方法有很坚实的理论基础,SVM 训练的本质是解决一个二次规划问题 ...
(五)训练Part 2
- 博客分类:
- 文本分类入门
将样本数据成功转化为向量表示之后,计算机才算开始真正意义上的“学习”过程。
再重复一次,所谓样本,也叫训练数据,是由人工进行分类处理过的文档集合,计算机认为这些数据的分类是绝对正确的,可以信赖的(但某些方法也有针对训练数据可能有错误而应对的措施)。接下来的一步便是由计算机来观察这些训练数据的特点,来猜测一个可能的分类规则(这个分类规则也可以叫做分类器,在机器学习的理论著作中也叫做一个“假设”,因为毕竟是对真实分类规则的一个猜测),一旦这个分类满足一些条件,我们就认为这个分类规则大致正确并且足够好了,便成为训练阶段的最终产品——分类器!再遇到新的,计算机没有见过的文档时,便使用这 ...
(四)训练Part 1 zz
- 博客分类:
- 文本分类入门
训练,顾名思义,就是training(汗,这解释),简单的说就是让计算机从给定的一堆文档中自己学习分类的规则(如果学不对的话,还要,打屁屁?)。
开始训练之前,再多说几句关于VSM这种文档表示模型的话。
举 ...
机器学习中的相似性度量zz
- 博客分类:
- 机器学习
在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。
本文的目的就是对常用的相似性度量作一个总结。
本文目录:
1. 欧氏距离
2. 曼哈顿距离
3. 切比雪夫距离
4. 闵可夫斯基距离
5. 标准化欧氏距离
(三)统计学习方法zz
- 博客分类:
- 文本分类入门
前文说到使用统计学习方法进行文本分类就是让计算机自己来观察由人提供的训练文档集,自己总结出用于判别文档类别的规则和依据。理想的结果当然是让计算机在理解文章内容的基础上进行这样的分类,然而遗憾的是,我 ...
(二)文本分类的方法zz
- 博客分类:
- 文本分类入门
文本分类问题与其它分类问题没有本质上的区别,其方法可以归结为根据待分类数据的某些特征来进行匹配,当然完全的匹配是不太可能的,因此必须(根据某种评价标准)选择最优的匹配结果,从而完成分类。
因此核心的问题便转化为用哪些特征表示一个文本才能保证有效和快速的分类(注意这两方面的需求往往是互相矛盾的)。因此自有文本分类系统的那天起,就一直是对特征的不同选择主导着方法派别的不同。
最早的词匹配法仅仅根据文档中是否出现了与类名相同的词(顶多再加入同义词的处理)来判断文档是否属于某个类别。很显然,这种过于简单的方法无法带来良好的分类效果。
后来兴起过一段时间的知识工程的方法则借助于专 ...
(一)文本分类问题的定义zz
- 博客分类:
- 文本分类入门
一个文本(以下基本不区分“文本”和“文档”两个词的含义)分类问题就是将一篇文档归入预先定义的几个类别中的一个或几个,而文本的自动分类则是使用计算机程序来实现这样的分类。通俗点说,就好比你拿一篇文章, ...
特征选择常用算法综述
- 博客分类:
- 机器学习
1 综述
(1) 什么是特征选择
特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。
转:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/
概率论只不过是把常识用数学公式表达了出来。
——拉普拉斯
记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次,在书店看到一本 ...
写这篇“Weka下使用LibSVM 的一点心得”本来并非有此想法,而是在使用Weka朴素贝叶斯分类器的时候,发现有一个LibSVM的选项。恰逢一个项目需要使用SVM分类器,所以就做了一下尝试。但是提示错误:“libsvm classes not in CLASSPATH”。在网上搜了一下,解决方法如下:
首先,在http://www.cs.iastate.edu/~yasser/wlsvm/上下载wlsvm.zip的压缩包,解压后将WLSVM \ lib 文件夹下的libsvm.jar 和wlsvm.jar 两个文件放到weka的安装目录下。
然后,在weka的安装目录下打开runwe ...
Tomcat中运行nutch的结果
- 博客分类:
- nutch
1、 复制nutch-1.2.war到到../tomcat7/webapps/下
2、 修改/webapps/nutch/WEB-INF/classes/nutch-site.xml :
将
<nutch-conf>
</nutch-conf>
换成
<nutch-conf>
<property>
1、下载nutch1.2到指定一个目录下,并打开eclipse新建一个java工程。并选择"Create project from existing source",指向nutch目录。
2、下一步操作,切换到"Libraries"选择"Add Class Folder..." 按钮,从列表中选择"conf",继续操作:切换到"Order and Export"找到"conf",把它移到顶。
3、到"Source"将output folder ...