`
uestzengting
  • 浏览: 96452 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Hbase的Region Compact算法实现分析

阅读更多
Hbase的Region Compact算法属于一种多路归并的外排算法。这种算法的特点是,待排序文件本身是有序的,同时打开这些文件,顺序遍历并对比它们的首条数据,最后合并输出为一个文件,多个文件遍历时的首条数据用内存堆进行内排。

Hbase在实现该算法的过程中重要的是下面这五个类。
1.org.apache.hadoop.hbase.regionserver.Store
2.org.apache.hadoop.hbase.regionserver.StoreScanner
3.org.apache.hadoop.hbase.regionserver.StoreFileScanner
4.org.apache.hadoop.hbase.regionserver.KeyValueHeap
5.org.apache.hadoop.hbase.regionserver.ScanQueryMatcher

这五个类的关系是
1.Store类调用StoreScanner的next方法,并循环输出kv到合并文件;
2.StoreScanner的作用是负责创建并持有多个输入文件的StoreFileScanner,内部遍历这些StoreFileScanner并通过KeyValueHeap来排序这些输入文件的首条记录;
3.StoreFileScanner的作用是遍历单个输入文件,管理并提供单个输入文件的首条记录;
4.KeyValueHeap的作用就是通过堆来排序每个输入文件的首条记录。
5.ScanQueryMatcher的作用是当输入文件的首条记录来的时候,根据一定的策略判断这条记录到底是该输出还是该跳过。

源代码如下:

1.Store.compact(final List<StoreFile> filesToCompact,
                               final boolean majorCompaction, final long maxId)
      throws IOException {

这个方法重点是对StoreScanner的方法的调用,因此比较简单,关键的是下面有注释的几句。

    // calculate maximum key count after compaction (for blooms)
    int maxKeyCount = 0;
    for (StoreFile file : filesToCompact) {
      StoreFile.Reader r = file.getReader();
      if (r != null) {
        // NOTE: getFilterEntries could cause under-sized blooms if the user
        //       switches bloom type (e.g. from ROW to ROWCOL)
        long keyCount = (r.getBloomFilterType() == family.getBloomFilterType())
          ? r.getFilterEntries() : r.getEntries();
        maxKeyCount += keyCount;
        if (LOG.isDebugEnabled()) {
          LOG.debug("Compacting " + file +
            ", keycount=" + keyCount +
            ", bloomtype=" + r.getBloomFilterType().toString() +
            ", size=" + StringUtils.humanReadableInt(r.length()) );
        }
      }
    }

    // For each file, obtain a scanner:
    List<StoreFileScanner> scanners = StoreFileScanner
      .getScannersForStoreFiles(filesToCompact, false, false);//将filesToCompact里的每个输入文件,都为它们创建一个StoreFileScanner对象,用于之后遍历和管理每个输入文件的首条记录。

    // Make the instantiation lazy in case compaction produces no product; i.e.
    // where all source cells are expired or deleted.
    StoreFile.Writer writer = null;
    try {
      InternalScanner scanner = null;
      try {
        Scan scan = new Scan();
        scan.setMaxVersions(family.getMaxVersions());
        /* include deletes, unless we are doing a major compaction */
        scanner = new StoreScanner(this, scan, scanners, !majorCompaction);//用刚才创建好的scanners为成员变量再创建StoreScanner,StoreScanner才是真正排序这些文件的对象。
        int bytesWritten = 0;
        // since scanner.next() can return 'false' but still be delivering data,
        // we have to use a do/while loop.
        ArrayList<KeyValue> kvs = new ArrayList<KeyValue>();
        while (scanner.next(kvs)) {//StoreScanner将文件的记录在内部排序好后,通过next方法循环输出
          if (writer == null && !kvs.isEmpty()) {
            writer = createWriterInTmp(maxKeyCount,
              this.compactionCompression);
          }
          if (writer != null) {
            // output to writer:
            for (KeyValue kv : kvs) {
              writer.append(kv);//直接将这些记录循环输出到合并文件就行了。

              // check periodically to see if a system stop is requested
              if (Store.closeCheckInterval > 0) {
                bytesWritten += kv.getLength();
                if (bytesWritten > Store.closeCheckInterval) {
                  bytesWritten = 0;
                  if (!this.region.areWritesEnabled()) {
                    writer.close();
                    fs.delete(writer.getPath(), false);
                    throw new InterruptedIOException(
                        "Aborting compaction of store " + this +
                        " in region " + this.region +
                        " because user requested stop.");
                  }
                }
              }
            }
          }
          kvs.clear();
        }
      } finally {
        if (scanner != null) {
          scanner.close();
        }
      }
    } finally {
      if (writer != null) {
        writer.appendMetadata(maxId, majorCompaction);
        writer.close();
      }
    }
    return writer;
  }


2。StoreScanner.StoreScanner(Store store, Scan scan, List<? extends KeyValueScanner> scanners,
      boolean retainDeletesInOutput)
  throws IOException {

这个是StoreScanner的构造函数,主要做了三方面工作,见下面注释

    this.store = store;
    this.cacheBlocks = false;
    this.isGet = false;
    matcher = new ScanQueryMatcher(scan, store.getFamily().getName(),
        null, store.ttl, store.comparator.getRawComparator(),
        store.versionsToReturn(scan.getMaxVersions()), retainDeletesInOutput);//创建ScanQueryMatcher对象,用于以后判断记录是该过滤还是输出

    // Seek all scanners to the initial key
    for(KeyValueScanner scanner : scanners) {
      scanner.seek(matcher.getStartKey());//每个输入文件都初始化好首条记录
    }

    // Combine all seeked scanners with a heap
    heap = new KeyValueHeap(scanners, store.comparator);//创建堆对象,用于之后每个输入文件首条记录的排序

  }


3.StoreScanner.next(List<KeyValue> outResult, int limit) throws IOException {
    //DebugPrint.println("SS.next");

这个方法封装了处理heap取出的记录值的逻辑,根据matcher对该值的判断来决定这个值是输出还是跳过,主要是下面三个方法,见注释

    checkReseek();

    // if the heap was left null, then the scanners had previously run out anyways, close and
    // return.
    if (this.heap == null) {
      close();
      return false;
    }

    KeyValue peeked = this.heap.peek();
    if (peeked == null) {
      close();
      return false;
    }

    // only call setRow if the row changes; avoids confusing the query matcher
    // if scanning intra-row
    if ((matcher.row == null) || !peeked.matchingRow(matcher.row)) {
      matcher.setRow(peeked.getRow());
    }

    KeyValue kv;
    List<KeyValue> results = new ArrayList<KeyValue>();
    LOOP: while((kv = this.heap.peek()) != null) {//拿出heap里排好序的值
      // kv is no longer immutable due to KeyOnlyFilter! use copy for safety
      KeyValue copyKv = new KeyValue(kv.getBuffer(), kv.getOffset(), kv.getLength());
      ScanQueryMatcher.MatchCode qcode = matcher.match(copyKv);//判断该值该如何处理,输出或跳过
      //DebugPrint.println("SS peek kv = " + kv + " with qcode = " + qcode);
      switch(qcode) {//根据判断具体的去处理该值
        case INCLUDE:
          results.add(copyKv);
          this.heap.next();
          if (limit > 0 && (results.size() == limit)) {
            break LOOP;
          }
          continue;

        case DONE:
          // copy jazz
          outResult.addAll(results);
          return true;

        case DONE_SCAN:
          close();

          // copy jazz
          outResult.addAll(results);

          return false;

        case SEEK_NEXT_ROW:
          // This is just a relatively simple end of scan fix, to short-cut end us if there is a
          // endKey in the scan.
          if (!matcher.moreRowsMayExistAfter(kv)) {
            outResult.addAll(results);
            return false;
          }

          reseek(matcher.getKeyForNextRow(kv));
          break;

        case SEEK_NEXT_COL:
          reseek(matcher.getKeyForNextColumn(kv));
          break;

        case SKIP:
          this.heap.next();
          break;

        case SEEK_NEXT_USING_HINT:
          KeyValue nextKV = matcher.getNextKeyHint(kv);
          if (nextKV != null) {
            reseek(nextKV);
          } else {
            heap.next();
          }
          break;

        default:
          throw new RuntimeException("UNEXPECTED");
      }
    }

    if (!results.isEmpty()) {
      // copy jazz
      outResult.addAll(results);
      return true;
    }

    // No more keys
    close();
    return false;
  }


4.KeyValueHeap.KeyValueHeap(List<? extends KeyValueScanner> scanners,
      KVComparator comparator) {

排序堆的构造方法,原来就是一个PriorityQueue,因为要比较的对象是kv记录,所以将kv的comparator作为参数来生成PriorityQueue的comparator

    this.comparator = new KVScannerComparator(comparator);
    if (!scanners.isEmpty()) {
      this.heap = new PriorityQueue<KeyValueScanner>(scanners.size(),
          this.comparator);//堆内部就是一个PriorityQueue
      for (KeyValueScanner scanner : scanners) {
        if (scanner.peek() != null) {
          this.heap.add(scanner);//把要排的文件scanner装入堆,文件自动按首条记录通过comparator排好序
        } else {
          scanner.close();
        }
      }
      this.current = heap.poll();//堆排序后的首个文件scanner
    }
  }


5.KeyValueHeap.next()  throws IOException {

堆里面最重要的方法其实就是next,不过看这个方法的主要功能不是为了算出nextKeyValue,而主要是为了算出nextScanner,然后需在外部再次调用peek方法来取得nextKeyValue,不是很简练。


    if(this.current == null) {
      return null;
    }
    KeyValue kvReturn = this.current.next();
    KeyValue kvNext = this.current.peek();
    if (kvNext == null) {//如果currentScanner已经读完
      this.current.close();
      this.current = this.heap.poll();//直接从余下scanner中取出新的nextScanner

    } else {//如果currentScanner还有值,把余下的scanner中首值最小的scanner取出来比一比,谁小谁就是新的nextScanner

      KeyValueScanner topScanner = this.heap.peek();
      if (topScanner == null ||
          this.comparator.compare(kvNext, topScanner.peek()) >= 0) {
        this.heap.add(this.current);
        this.current = this.heap.poll();
      }
    }
    return kvReturn;
  }


总结:Hbase的Region Compact算法是在一个RegionServer上执行的,在这个执行的过程中,可能有两个瓶颈,
第一,如果待排序的文件数目过多,有导致内存堆溢出的风险,虽然在内存很大的今天,这种情形应该较难出现,但是如果一个regionserver管理了很多region,而这些region又恰好同时都在执行compact的话这就很难说了;
第二,文件的合并工作是在一台RegionServer上执行的,为何不考虑用mapred的形式通过整个集群来分担这种文件合并的工作,最后regionserver只需把合并好的文件装入region就行。
1
0
分享到:
评论
1 楼 leibnitz 2014-09-11  
这么早就研究源码已经是难得了.
你说的第二点能这样说吗:
a.会依赖mr,不保证它时刻在候命
b.通常hb有balance 定时跑,如果不是设计的不合理,意味着每个rs基本是均匀的.所以如果利用rs来执行也未尝不可吧

相关推荐

    HBase应用最佳实践详解.pdf

    * 数据分析:HBase可以用于数据分析,满足数据挖掘和机器学习的需求 * 实时数据处理:HBase可以用于实时数据处理,满足流数据处理的需求 HBase表设计 HBase表设计是指设计HBase表的结构和schema,以满足具体的业务...

    hbase性能调优

    HBase支持多种压缩算法,如Snappy、LZO和GZIP。Snappy压缩率较低但解压速度快,适合实时查询场景;LZO无损且注重解压速度;GZIP则提供更高的压缩率但牺牲了速度。使用`CompressionTest`工具检查系统是否已安装所需...

    Hbase性能测试详细设计文档及用例.pdf

    但预先创建多个Region可避免所有数据集中在一个Region,实现数据的负载均衡,提高写入效率。 其次, Compact与Split机制是HBase内部数据管理的核心。数据更新首先写入WAL日志和内存的MemStore,当MemStore达到阈值...

    HBase大数据技术原理与实践.pptx

    当MemStore达到一定大小时,数据会被Flush到StoreFile,并在必要时进行Compact和Split操作。HLog作为WAL,保证数据在写入HBase前先写入日志,以防数据丢失。 HFile是HBase的存储格式,有V1、V2和V3三个版本,V2引入...

    初始化pinpoint库

    5. `hbase-major-compact-htable.hbase`:HBase的重大合并(Major Compaction)是将多个HFile合并成一个,以减少数据文件的数量并优化空间使用。这个脚本可能就是执行这个操作的命令。 6. `README.md`:这是一个...

    大数据 76 道面试题及答案.docx

    版本管理:HBase中的数据更新本质上是不断追加新的版本,通过compact操作来做版本间的文件合并。 3. Region的split和集群管理: Region的split是指将一个region分成多个region的过程。集群管理是通过ZooKeeper+...

    最热门的Java 分布式面试题汇总

    28. HBase Region切分:根据Region大小和负载自动切分,保持负载均衡。 29. 读写流程:读取通过RowKey定位,写入先写WAL再写MemStore,定期Flush到HFile,最后Compact。 30. RowKey设计:应尽量唯一且有序,利于...

    淘宝支付宝数据平台

    - 优化了`hregion`下的`minor compact`算法,提高了`minor compact`的速度。 - 优化了客户端的多个`GET`查询请求速度。 - 设计了合理的`block size`,支持快速的随机读和顺序读。 - **CTU风险数据项目** - 合理...

Global site tag (gtag.js) - Google Analytics