一般把java堆分成新生代和老年代。垃圾回收器在新生代使用复制算法时:将新生代分成Eden和2个survivor。
简单来说,对象内存分配主要是在堆中分配。但是分配的规则并不是固定的,取决于使用的收集器组合以及JVM内存相关参数的设定
一,对象优先在新生代Eden区分配
/** * * 类描述:对象优先在eden分配,以及minor gc垃圾清理 * jvm:-XX:+PrintGCDetails -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8 * @since jdk1.7 * @version 1.0 */ public class ObjEden { private static int _1M = 1024 * 1024; public static void main(String[] args) { byte[] b1, b2, b3, b4; b1 = new byte[2 * _1M]; b2 = new byte[2 * _1M]; b3 = new byte[2 * _1M]; b4 = new byte[3 * _1M]; } }
这段代码执行的jvm参数:-XX:+PrintGCDetails -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8
-XX:+PrintGCDetails:控制台打印垃圾回收日志
-Xms20M:限制堆大小20m
-Xmx20M:堆大小最大20m
-Xmn10M:新生代大小10m,意味着老年代也是10m
-XX:SurvivorRatio=8:新年代的 Eden区和一个Survivor区的比例是8:1
执行结果:
[GC [PSYoungGen: 6815K->386K(9216K)] 6815K->6530K(19456K), 0.0051716 secs] [Times: user=0.02 sys=0.02, real=0.01 secs] [Full GC [PSYoungGen: 386K->0K(9216K)] [PSOldGen: 6144K->6412K(10240K)] 6530K->6412K(19456K) [PSPermGen: 3030K->3030K(21248K)], 0.0083140 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] Heap PSYoungGen total 9216K, used 3399K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000) eden space 8192K, 41% used [0x00000000ff600000,0x00000000ff951f98,0x00000000ffe00000) from space 1024K, 0% used [0x00000000ffe00000,0x00000000ffe00000,0x00000000fff00000) to space 1024K, 0% used [0x00000000fff00000,0x00000000fff00000,0x0000000100000000) PSOldGen total 10240K, used 6412K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000) object space 10240K, 62% used [0x00000000fec00000,0x00000000ff2430f0,0x00000000ff600000) PSPermGen total 21248K, used 3047K [0x00000000f9a00000, 0x00000000faec0000, 0x00000000fec00000) object space 21248K, 14% used [0x00000000f9a00000,0x00000000f9cf9e70,0x00000000faec0000)
注:当b3分配完成后,新生代将使用6M内存(6144KB,b1+b2+b3),同时申请b4的4M=4096KB内存,此时新生代的可用内存为9216-6144=3072KB,不足以分配b4的空间,则触发一次Minor GC回收新生代内存空间,由于b1、b2以及b3都为存活状态,并且剩余的一个Survivor区无法装下b1、b2和b3,则新生代会租借老年代的区域,并将b1、b2和b3移动至租借区域,然后新生代完成Minor GC。由于此时新生代已经没有对象存放其中,剩余大量内存,则b4将在新生代中分配
二,大对象直接进入老年代
为了避免内存回收时大对象在Eden区和2个Survivor区之间的拷贝(ParNew收集器使用复制算法),同时为了避免为了提供足够的内存空间而提前触发的GC,虚拟机提供了-XX:PretenureSizeThreshold(该设置只对Serial和ParNew收集器生效)参数,大于该参数设置值的对象将直接在老年代分配
- //-XX:+UseParNewGC -Xms20m -Xmx20m -Xmn10m -XX:+PrintHeapAtGC -XX:+PrintGCDetails
- //-XX:PretenureSizeThreshold=2097152
- public class test {
- static int mb = 1024*1024;
- public static void main(String[] args) {
- byte[] b1 = new byte[3*mb];
- System.out.println("b1 over");
- }
- }
由于设置超过2M(2*1024*1024=2097152B)的对象直接在老年代分配,故b1将分配在老年代上
- b1 over
- Heap
- par new generation total 9216K, used 507K [0x03b50000, 0x04550000, 0x04550000)//新生代几乎为空
- eden space 8192K, 6% used [0x03b50000, 0x03bcef00, 0x04350000)
- from space 1024K, 0% used [0x04350000, 0x04350000, 0x04450000)
- to space 1024K, 0% used [0x04450000, 0x04450000, 0x04550000)
- tenured generation total 10240K, used 3072K [0x04550000, 0x04f50000, 0x04f50000)//老年代使用了3*1024K内存
- the space 10240K, 30% used [0x04550000, 0x04850010, 0x04850200, 0x04f50000)
- compacting perm gen total 12288K, used 2110K [0x04f50000, 0x05b50000, 0x08f50000)
- the space 12288K, 17% used [0x04f50000, 0x0515f8c8, 0x0515fa00, 0x05b50000)
- No shared spaces configured.
三,长期存活对象将进入老年代
由于虚拟机垃圾收集是基于“分代算法”的,故虚拟机必须能够识别哪些对象存放在新生代,哪些对象应该存放在老年代
虚拟机设计了一个对象年龄计数器,如果对象在Eden区出生并且经过第一次Minor GC后依然存活,并且可以被Survivor区容纳,就会被复制至Survivor区并将对象年龄设置为1。以后对象每熬过一次Minor GC,对象年龄便+1。当对象年龄超过对象晋升老年代的年龄阀值(该阀值默认为15)时,便会晋升至老年代,何时晋升,我们接下来研究
虚拟机提供了-XX:MaxTenuringThreshold参数设置晋升阀值
- //-XX:+UseParNewGC -Xms20m -Xmx20m -Xmn10m -XX:+PrintHeapAtGC -XX:+PrintGCDetails
- //-XX:MaxTenuringThreshold=1
- public class test {
- static int mb = 1024*1024;
- public static void main(String[] args) {
- System.out.println("step 1");
- byte[] b1 = new byte[1*mb/4];
- System.out.println("step 2");
- byte[] b2 = new byte[4*mb];
- System.out.println("step 3");
- byte[] b3 = new byte[4*mb];//GC
- System.out.println("step 4");
- b3 = null;
- System.out.println("step 5");
- b3 = new byte[4*mb];//GC
- }
- }
b1、b2正常分配。在step3,新生代将没有足够的内存分配b3所需的4M空间,故引发一次Minor GC。b1只有256KB,可以放置在Survivor区中,故复制b1到Survivor区中,b2为4M,无法放置到Survivor区中,故租借老年代4M内存放置b2,回收新生代内存空间,b1经历了一次Minor GC后依然存活,故年龄变为1。
在step4,分配给b3对象的内存空间依然被占用,只是将b3对象的引用置为空,由于不涉及到内存分配,故而不涉及到GC,因此对象的年龄也不会发生变化
在step5,重新给b3对象分配4M空间,由于新生代没有足够内存,故引发Minor GC,step3分配给b3的4M内存空间由于不再与存活对象相关联,将被回收,同时,由于b1的年龄到达对象晋升老年代的年龄设置,b1将被移动至老年代
- step 1
- step 2
- step 3
- {Heap before GC invocations=0 (full 0):
- par new generation total 9216K, used 4695K [0x03b80000, 0x04580000, 0x04580000)//b1+b2
- eden space 8192K, 57% used [0x03b80000, 0x04015f50, 0x04380000)
- from space 1024K, 0% used [0x04380000, 0x04380000, 0x04480000)
- to space 1024K, 0% used [0x04480000, 0x04480000, 0x04580000)
- tenured generation total 10240K, used 0K [0x04580000, 0x04f80000, 0x04f80000)//此时老年代为空
- the space 10240K, 0% used [0x04580000, 0x04580000, 0x04580200, 0x04f80000)
- compacting perm gen total 12288K, used 2105K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x0518e450, 0x0518e600, 0x05b80000)
- No shared spaces configured.
- [GC [ParNew: 4695K->409K(9216K), 0.0049519 secs] 4695K->4505K(19456K), 0.0049944 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
- Heap after GC invocations=1 (full 0):
- par new generation total 9216K, used 409K [0x03b80000, 0x04580000, 0x04580000)//b1
- eden space 8192K, 0% used [0x03b80000, 0x03b80000, 0x04380000)
- from space 1024K, 39% used [0x04480000, 0x044e6610, 0x04580000)
- to space 1024K, 0% used [0x04380000, 0x04380000, 0x04480000)
- tenured generation total 10240K, used 4096K [0x04580000, 0x04f80000, 0x04f80000)//b2
- the space 10240K, 40% used [0x04580000, 0x04980010, 0x04980200, 0x04f80000)
- compacting perm gen total 12288K, used 2105K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x0518e450, 0x0518e600, 0x05b80000)
- No shared spaces configured.
- }
- step 4
- step 5
- {Heap before GC invocations=1 (full 0):
- par new generation total 9216K, used 4669K [0x03b80000, 0x04580000, 0x04580000)//b1+b3(step3)
- eden space 8192K, 52% used [0x03b80000, 0x03fa9098, 0x04380000)
- from space 1024K, 39% used [0x04480000, 0x044e6610, 0x04580000)
- to space 1024K, 0% used [0x04380000, 0x04380000, 0x04480000)
- tenured generation total 10240K, used 4096K [0x04580000, 0x04f80000, 0x04f80000)//b2
- the space 10240K, 40% used [0x04580000, 0x04980010, 0x04980200, 0x04f80000)
- compacting perm gen total 12288K, used 2111K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x0518fe08, 0x05190000, 0x05b80000)
- No shared spaces configured.
- [GC [ParNew: 4669K->43K(9216K), 0.0008256 secs] 8765K->4548K(19456K), 0.0008701 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
- Heap after GC invocations=2 (full 0):
- par new generation total 9216K, used 43K [0x03b80000, 0x04580000, 0x04580000)//step3分配的b3对象空间被回收
- eden space 8192K, 0% used [0x03b80000, 0x03b80000, 0x04380000)
- from space 1024K, 4% used [0x04380000, 0x0438ad90, 0x04480000)
- to space 1024K, 0% used [0x04480000, 0x04480000, 0x04580000)
- tenured generation total 10240K, used 4505K [0x04580000, 0x04f80000, 0x04f80000)//b1+b2
- the space 10240K, 43% used [0x04580000, 0x049e6590, 0x049e6600, 0x04f80000)
- compacting perm gen total 12288K, used 2111K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x0518fe08, 0x05190000, 0x05b80000)
- No shared spaces configured.
- }
- Heap
- par new generation total 9216K, used 4303K [0x03b80000, 0x04580000, 0x04580000)//b3(step5)
- eden space 8192K, 52% used [0x03b80000, 0x03fa8fe0, 0x04380000)
- from space 1024K, 4% used [0x04380000, 0x0438ad90, 0x04480000)
- to space 1024K, 0% used [0x04480000, 0x04480000, 0x04580000)
- tenured generation total 10240K, used 4505K [0x04580000, 0x04f80000, 0x04f80000)//b1+b2
- the space 10240K, 43% used [0x04580000, 0x049e6590, 0x049e6600, 0x04f80000)
- compacting perm gen total 12288K, used 2116K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x051913c8, 0x05191400, 0x05b80000)
- No shared spaces configured.
如果修改MaxTenuringThreshold的值为2,从打印日志中可以发现,最终老年代的内存使用量为4096KB=4M,也就是说b1没有晋升至老年代
上面是Minor GC的运行状况,如果是Full GC呢:
- //-XX:+UseParNewGC -Xms20m -Xmx20m -Xmn10m -XX:+PrintHeapAtGC -XX:+PrintGCDetails
- //-XX:MaxTenuringThreshold=1
- public class test {
- static int mb = 1024*1024;
- public static void main(String[] args) {
- byte[] b1 = new byte[1*mb/4];
- System.gc();
- }
- }
这里我们使用的是Full GC,也就是老年代的GC。
Full GC通常至少伴随着一次Minor GC(并非绝对),看下面日志,这里的Minor GC应该至少发生了2次,一次Minor GC是不会把b1移动至老年代的
- {Heap before GC invocations=0 (full 0):
- par new generation total 9216K, used 599K [0x03b80000, 0x04580000, 0x04580000)//b1
- eden space 8192K, 7% used [0x03b80000, 0x03c15f40, 0x04380000)
- from space 1024K, 0% used [0x04380000, 0x04380000, 0x04480000)
- to space 1024K, 0% used [0x04480000, 0x04480000, 0x04580000)
- tenured generation total 10240K, used 0K [0x04580000, 0x04f80000, 0x04f80000)//老年代为空
- the space 10240K, 0% used [0x04580000, 0x04580000, 0x04580200, 0x04f80000)
- compacting perm gen total 12288K, used 2104K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x0518e278, 0x0518e400, 0x05b80000)
- No shared spaces configured.
- [Full GC (System) [Tenured: 0K->404K(10240K), 0.0069434 secs] 599K->404K(19456K), [Perm : 2104K->2104K(12288K)], 0.0069992 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
- Heap after GC invocations=1 (full 1):
- par new generation total 9216K, used 0K [0x03b80000, 0x04580000, 0x04580000)//新生代为空
- eden space 8192K, 0% used [0x03b80000, 0x03b80000, 0x04380000)
- from space 1024K, 0% used [0x04380000, 0x04380000, 0x04480000)
- to space 1024K, 0% used [0x04480000, 0x04480000, 0x04580000)
- tenured generation total 10240K, used 404K [0x04580000, 0x04f80000, 0x04f80000)//b1
- the space 10240K, 3% used [0x04580000, 0x045e5130, 0x045e5200, 0x04f80000)
- compacting perm gen total 12288K, used 2104K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x0518e278, 0x0518e400, 0x05b80000)
- No shared spaces configured.
- }
- Heap
- par new generation total 9216K, used 327K [0x03b80000, 0x04580000, 0x04580000)
- eden space 8192K, 4% used [0x03b80000, 0x03bd1f98, 0x04380000)
- from space 1024K, 0% used [0x04380000, 0x04380000, 0x04480000)
- to space 1024K, 0% used [0x04480000, 0x04480000, 0x04580000)
- tenured generation total 10240K, used 404K [0x04580000, 0x04f80000, 0x04f80000)
- the space 10240K, 3% used [0x04580000, 0x045e5130, 0x045e5200, 0x04f80000)
- compacting perm gen total 12288K, used 2116K [0x04f80000, 0x05b80000, 0x08f80000)
- the space 12288K, 17% used [0x04f80000, 0x05191190, 0x05191200, 0x05b80000)
- No shared spaces configured.
四:动态对象年龄判定
为了使内存分配更加灵活,虚拟机并不要求对象年龄达到MaxTenuringThreshold才晋升老年代
如果Survivor区中相同年龄所有对象大小的总和大于Survivor区空间的一半,年龄大于或等于该年龄的对象在Minor GC时将复制至老年代
- //-XX:+UseParNewGC -Xms20m -Xmx20m -Xmn10m -XX:MaxTenuringThreshold=10
- //-XX:+PrintTenuringDistribution
- public class Test {
- static int mb = 1024*1024;
- public static void main(String[] args) {
- System.out.println("step 1");
- byte[] b1 = new byte[1*mb/4];
- byte[] b3 = new byte[4*mb];
- byte[] b4 = new byte[4*mb];//GC
- System.out.println("step 2");
- byte[] b2 = new byte[1*mb/4];//可以尝试1*mb/2,然后观察日志
- b4 = null;
- System.out.println("step 3");
- b4 = new byte[4*mb];//GC
- System.out.println("step 4");
- b4 = null;
- b4 = new byte[4*mb];//GC
- }
- }
先来介绍一个设置-XX:+PrintTenuringDistribution,这个参数很有意思,会在Minor GC时打印Survivor区内存容量的一半,晋升老年代年龄阀值,Survivor区中的对象大小以及对象年龄
根据启动参数的设置,Survivor大小的一半是524288B,也就是512KB。第一次GC后,b1依然存活,故年龄变为1。第二次GC后,b1和b2依然存活,故b1的年龄变为2,b2的年龄为1。b1+b2的大小加起来超过了Survivor区容量的一半,此时会修改Survivor区晋升老年代年龄阀值为2(如果移动年龄为2的对象可以使Survivor去的内存使用降至512KB以内,则只移动年龄为2的对象,否则将会同时移动年龄为1的对象)。第三次GC时,将年龄等于晋升阀值的对象移动至老年代,执行GC,GC结束后,b1依然在Survivor区(当然可能从Survivor from区拷贝至了Survivor to区),此时b1的年龄变为2。这时Survivor区的使用内存没有达到512M,修改Survivor区晋升老年代年龄阀值为参数设置的10。
- step 1
- Desired survivor size 524288 bytes, new threshold 10 (max 10)
- - age 1: 412800 bytes, 412800 total
- step 2
- step 3
- Desired survivor size 524288 bytes, new threshold 2 (max 10)
- - age 1: 262160 bytes, 262160 total
- - age 2: 412800 bytes, 674960 total
- step 4
- Desired survivor size 524288 bytes, new threshold 10 (max 10)
- - age 1: 136 bytes, 136 total
- - age 2: 262160 bytes, 262296 total
最后,为什么在第三次GC后,Survivor区还存在一个大小为136B,年龄为1的被使用内存空间?
我猜测,虽然Minor GC时Survivor区没有足够的空间完成GC时会租借老年代的内存,但是在Survivor区依然保存了一个指向老年代租借内存起始地址的引用
五:空间分配担保
这个前面已经出现过多次了,由于新生代使用复制算法,当Minor GC时如果存活对象过多,无法完全放入Survivor区,就会向老年代借用内存存放对象,以完成Minor GC
在触发Minor GC时,虚拟机会先检测之前GC时租借的老年代内存的平均大小是否大于老年代的剩余内存,如果大于,则将Minor GC变为一次Full GC,如果小于,则查看虚拟机是否允许担保失败(-XX:+/-HandlePromotionFailure。从jdk6.0开始,允许担保失败已变为HotSpot虚拟机所有收集器默认设置,虚拟机将不再识别该参数设置,详见JDK-6990095 : Deprecate and eliminate -XX:-HandlePromotionFailure),如果允许担保失败,则只执行一次Minor GC,否则也要将Minor GC变为一次Full GC(直到GC结束时才能确定到底有多少对象需要被移动至老年代,所以在GC前,只能使用粗略的平均值进行判断)
相关推荐
### 深入Java虚拟机JVM类加载学习笔记 #### 一、Classloader机制解析 在Java虚拟机(JVM)中,类加载器(ClassLoader)是负责将类的`.class`文件加载到内存中的重要组件。理解类加载器的工作原理对于深入掌握JVM以及...
内容概要:本文探讨了模糊故障树(FFTA)在工业控制系统可靠性分析中的应用,解决了传统故障树方法无法处理不确定数据的问题。文中介绍了模糊数的基本概念和实现方式,如三角模糊数和梯形模糊数,并展示了如何用Python实现模糊与门、或门运算以及系统故障率的计算。此外,还详细讲解了最小割集的查找方法、单元重要度的计算,并通过实例说明了这些方法的实际应用场景。最后,讨论了模糊运算在处理语言变量方面的优势,强调了在可靠性分析中处理模糊性和优化计算效率的重要性。 适合人群:从事工业控制系统设计、维护的技术人员,以及对模糊数学和可靠性分析感兴趣的科研人员。 使用场景及目标:适用于需要评估复杂系统可靠性的场合,特别是在面对不确定数据时,能够提供更准确的风险评估。目标是帮助工程师更好地理解和预测系统故障,从而制定有效的预防措施。 其他说明:文中提供的代码片段和方法可用于初步方案验证和技术探索,但在实际工程项目中还需进一步优化和完善。
内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
内容概要:本文详细介绍了基于西门子S7-200 PLC和组态王软件构建的八层电梯控制系统。首先阐述了系统的硬件配置,包括PLC的IO分配策略,如输入输出信号的具体分配及其重要性。接着深入探讨了梯形图编程逻辑,涵盖外呼信号处理、轿厢运动控制以及楼层判断等关键环节。随后讲解了组态王的画面设计,包括动画效果的实现方法,如楼层按钮绑定、轿厢移动动画和门开合效果等。最后分享了一些调试经验和注意事项,如模拟困人场景、防抖逻辑、接线艺术等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和组态软件有一定基础的人群。 使用场景及目标:适用于需要设计和实施小型电梯控制系统的工程项目。主要目标是帮助读者掌握PLC编程技巧、组态画面设计方法以及系统联调经验,从而提高项目的成功率。 其他说明:文中提供了详细的代码片段和调试技巧,有助于读者更好地理解和应用相关知识点。此外,还强调了安全性和可靠性方面的考量,如急停按钮的正确接入和硬件互锁设计等。
内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。
包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51单片机作为主控; 2、采用AD0809(仿真0808)检测"PH、氨、亚硝酸盐、硝酸盐"模拟传感; 3、采用DS18B20检测温度; 4、采用1602液晶显示检测值; 5、检测值同时串口上传,调试助手监看; 6、亦可通过串口指令对加热器、制氧机进行控制;
内容概要:本文详细介绍了双馈永磁风电机组并网仿真模型及其短路故障分析方法。首先构建了一个9MW风电场模型,由6台1.5MW双馈风机构成,通过升压变压器连接到120kV电网。文中探讨了风速模块的设计,包括渐变风、阵风和随疾风的组合形式,并提供了相应的Python和MATLAB代码示例。接着讨论了双闭环控制策略,即功率外环和电流内环的具体实现细节,以及MPPT控制用于最大化风能捕获的方法。此外,还涉及了短路故障模块的建模,包括三相电压电流特性和离散模型与phasor模型的应用。最后,强调了永磁同步机并网模型的特点和注意事项。 适合人群:从事风电领域研究的技术人员、高校相关专业师生、对风电并网仿真感兴趣的工程技术人员。 使用场景及目标:适用于风电场并网仿真研究,帮助研究人员理解和优化风电机组在不同风速条件下的性能表现,特别是在短路故障情况下的应对措施。目标是提高风电系统的稳定性和可靠性。 其他说明:文中提供的代码片段和具体参数设置有助于读者快速上手并进行实验验证。同时提醒了一些常见的错误和需要注意的地方,如离散化步长的选择、初始位置对齐等。
适用于空手道训练和测试场景
内容概要:本文介绍了金牌音乐作词大师的角色设定、背景经历、偏好特点、创作目标、技能优势以及工作流程。金牌音乐作词大师凭借深厚的音乐文化底蕴和丰富的创作经验,能够为不同风格的音乐创作歌词,擅长将传统文化元素与现代流行文化相结合,创作出既富有情感又触动人心的歌词。在创作过程中,会严格遵守社会主义核心价值观,尊重用户需求,提供专业修改建议,确保歌词内容健康向上。; 适合人群:有歌词创作需求的音乐爱好者、歌手或音乐制作人。; 使用场景及目标:①为特定主题或情感创作歌词,如爱情、励志等;②融合传统与现代文化元素创作独特风格的歌词;③对已有歌词进行润色和优化。; 阅读建议:阅读时可以重点关注作词大师的创作偏好、技能优势以及工作流程,有助于更好地理解如何创作出高质量的歌词。同时,在提出创作需求时,尽量详细描述自己的情感背景和期望,以便获得更贴合心意的作品。
linux之用户管理教程.md
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示设置及状态; 3、采用L298驱动两个电机,模拟机械臂动力、移动底盘动力; 3、首先按键配置-待搬运物块的高度和宽度(为0不能开始搬运); 4、按下启动键开始搬运,搬运流程如下: 机械臂先把物块抓取到机器车上, 机械臂减速 机器车带着物块前往目的地 机器车减速 机械臂把物块放下来 机械臂减速 机器车回到物块堆积处(此时机器车是空车) 机器车减速 蜂鸣器提醒 按下复位键,结束本次搬运
内容概要:本文详细介绍了基于下垂控制的三相逆变器电压电流双闭环控制的仿真方法及其在MATLAB/Simulink和PLECS中的具体实现。首先解释了下垂控制的基本原理,即有功调频和无功调压,并给出了相应的数学表达式。随后讨论了电压环和电流环的设计与参数整定,强调了两者带宽的差异以及PI控制器的参数选择。文中还提到了一些常见的调试技巧,如锁相环的响应速度、LC滤波器的谐振点处理、死区时间设置等。此外,作者分享了一些实用的经验,如避免过度滤波、合理设置采样周期和下垂系数等。最后,通过突加负载测试展示了系统的动态响应性能。 适合人群:从事电力电子、微电网研究的技术人员,尤其是有一定MATLAB/Simulink和PLECS使用经验的研发人员。 使用场景及目标:适用于希望深入了解三相逆变器下垂控制机制的研究人员和技术人员,旨在帮助他们掌握电压电流双闭环控制的具体实现方法,提高仿真的准确性和效率。 其他说明:本文不仅提供了详细的理论讲解,还结合了大量的实战经验和调试技巧,有助于读者更好地理解和应用相关技术。
内容概要:本文详细介绍了光伏并网逆变器的全栈开发资料,涵盖了从硬件设计到控制算法的各个方面。首先,文章深入探讨了功率接口板的设计,包括IGBT缓冲电路、PCB布局以及EMI滤波器的具体参数和设计思路。接着,重点讲解了主控DSP板的核心控制算法,如MPPT算法的实现及其注意事项。此外,还详细描述了驱动扩展板的门极驱动电路设计,特别是光耦隔离和驱动电阻的选择。同时,文章提供了并联仿真的具体实现方法,展示了环流抑制策略的效果。最后,分享了许多宝贵的实战经验和调试技巧,如主变压器绕制、PWM输出滤波、电流探头使用等。 适合人群:从事电力电子、光伏系统设计的研发工程师和技术爱好者。 使用场景及目标:①帮助工程师理解和掌握光伏并网逆变器的硬件设计和控制算法;②提供详细的实战经验和调试技巧,提升产品的可靠性和性能;③适用于希望深入了解光伏并网逆变器全栈开发的技术人员。 其他说明:文中不仅提供了具体的电路设计和代码实现,还分享了许多宝贵的实际操作经验和常见问题的解决方案,有助于提高开发效率和产品质量。
内容概要:本文详细介绍了粒子群优化(PSO)算法与3-5-3多项式相结合的方法,在机器人轨迹规划中的应用。首先解释了粒子群算法的基本原理及其在优化轨迹参数方面的作用,随后阐述了3-5-3多项式的数学模型,特别是如何利用不同阶次的多项式确保轨迹的平滑过渡并满足边界条件。文中还提供了具体的Python代码实现,展示了如何通过粒子群算法优化时间分配,使3-5-3多项式生成的轨迹达到时间最优。此外,作者分享了一些实践经验,如加入惩罚项以避免超速,以及使用随机扰动帮助粒子跳出局部最优。 适合人群:对机器人运动规划感兴趣的科研人员、工程师和技术爱好者,尤其是有一定编程基础并对优化算法有初步了解的人士。 使用场景及目标:适用于需要精确控制机器人运动的应用场合,如工业自动化生产线、无人机导航等。主要目标是在保证轨迹平滑的前提下,尽可能缩短运动时间,提高工作效率。 其他说明:文中不仅给出了理论讲解,还有详细的代码示例和调试技巧,便于读者理解和实践。同时强调了实际应用中需要注意的问题,如系统的建模精度和安全性考量。
KUKA机器人相关资料
内容概要:本文详细探讨了光子晶体中的束缚态在连续谱中(BIC)及其与轨道角动量(OAM)激发的关系。首先介绍了光子晶体的基本概念和BIC的独特性质,随后展示了如何通过Python代码模拟二维光子晶体中的BIC,并解释了BIC在光学器件中的潜在应用。接着讨论了OAM激发与BIC之间的联系,特别是BIC如何增强OAM激发效率。文中还提供了使用有限差分时域(FDTD)方法计算OAM的具体步骤,并介绍了计算本征态和三维Q值的方法。此外,作者分享了一些实验中的有趣发现,如特定条件下BIC表现出OAM特征,以及不同参数设置对Q值的影响。 适合人群:对光子晶体、BIC和OAM感兴趣的科研人员和技术爱好者,尤其是从事微纳光子学研究的专业人士。 使用场景及目标:适用于希望通过代码模拟深入了解光子晶体中BIC和OAM激发机制的研究人员。目标是掌握BIC和OAM的基础理论,学会使用Python和其他工具进行模拟,并理解这些现象在实际应用中的潜力。 其他说明:文章不仅提供了详细的代码示例,还分享了许多实验心得和技巧,帮助读者避免常见错误,提高模拟精度。同时,强调了物理离散化方式对数值计算结果的重要影响。
内容概要:本文详细介绍了如何使用C#和Halcon 17.12构建一个功能全面的工业视觉项目。主要内容涵盖项目配置、Halcon脚本的选择与修改、相机调试、模板匹配、生产履历管理、历史图像保存以及与三菱FX5U PLC的以太网通讯。文中不仅提供了具体的代码示例,还讨论了实际项目中常见的挑战及其解决方案,如环境配置、相机控制、模板匹配参数调整、PLC通讯细节、生产数据管理和图像存储策略等。 适合人群:从事工业视觉领域的开发者和技术人员,尤其是那些希望深入了解C#与Halcon结合使用的专业人士。 使用场景及目标:适用于需要开发复杂视觉检测系统的工业应用场景,旨在提高检测精度、自动化程度和数据管理效率。具体目标包括但不限于:实现高效的视觉处理流程、确保相机与PLC的无缝协作、优化模板匹配算法、有效管理生产和检测数据。 其他说明:文中强调了框架整合的重要性,并提供了一些实用的技术提示,如避免不同版本之间的兼容性问题、处理实时图像流的最佳实践、确保线程安全的操作等。此外,还提到了一些常见错误及其规避方法,帮助开发者少走弯路。
内容概要:本文探讨了分布式电源(DG)接入对9节点配电网节点电压的影响。首先介绍了9节点配电网模型的搭建方法,包括定义节点和线路参数。然后,通过在特定节点接入分布式电源,利用Matlab进行潮流计算,模拟DG对接入点及其周围节点电压的影响。最后,通过绘制电压波形图,直观展示了不同DG容量和接入位置对配电网电压分布的具体影响。此外,还讨论了电压越限问题以及不同线路参数对电压波动的影响。 适合人群:电力系统研究人员、电气工程学生、从事智能电网和分布式能源研究的专业人士。 使用场景及目标:适用于研究分布式电源接入对配电网电压稳定性的影响,帮助优化分布式电源的规划和配置,确保电网安全稳定运行。 其他说明:文中提供的Matlab代码和图表有助于理解和验证理论分析,同时也为后续深入研究提供了有价值的参考资料。
内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。
内容概要:本文详细介绍了一套成熟的西门子1200 PLC轴运动控制程序模板,涵盖多轴伺服控制、电缸控制、PLC通讯、气缸报警块、完整电路图、威纶通触摸屏程序和IO表等方面的内容。该模板已在多个项目中成功应用,如海康威视的路由器外壳装配机,确保了系统的稳定性和可靠性。文中不仅提供了具体的代码示例,还分享了许多实战经验和技巧,如参数设置、异常处理机制、通讯优化等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC编程和轴运动控制的从业者。 使用场景及目标:适用于需要快速搭建稳定可靠的PLC控制系统的企业和个人开发者。通过学习和应用该模板,可以提高开发效率,减少调试时间和错误发生率,从而更好地满足项目需求。 其他说明:文章强调了程序模板的实用性,特别是在异常处理和参数配置方面的独特设计,能够有效应对复杂的工业环境挑战。此外,还提到了一些常见的陷阱和解决方案,帮助读者避开常见错误,顺利实施项目。