文章来源:http://www.itnose.net/detail/6033934.html 更多文章:http://www.itnose.net/type/55.html
本文不探讨罗列引用的概念,什么函数传参之类的,这些基础概念和用法很容易搜到~!
本文主要探讨引用和指针在C语言的下一层??即汇编或者确切的说是伪汇编(AT&T伪汇编都一样的代码,你指望下层x86汇编还能不一样么~)??的实现过程,来摸索一下他们的特点与本质。
首先,引用(Reference)在C中没有,是C++ 才有的概念~! 要用g++编译器。
定义:引用就是某个目标变量的“别名”(alias)
在我看来,这个“目标变量”也要加上引号,看“目标变量”到底是怎么定义的了。如果“目标变量”由变量名和值组成,那引用应该是不包含“变量名”这部分的,说白了,觉得他就是一个“新变量”,只是他和原变量的“值”(即,目标地址,存储内容)是共用的。
实例测试:
用g++编译,gdb调试:
可以看到,让refa引用a的过程,其实就是提取地址(lea),并且占用了栈空间。和指针的实现是一模一样的。不管你“理论上”怎么说,至少在实现上(至少在linux的实现上),他就是指针。
可以看到,操作都是直接或者间接的对a的原地址0x10(%esp)进行操作,这个没什么问题。但是说引用不占地址是错误的,作为一个“指针”他至少占用4字节吧~!
这是代码后续的赋值操作:
Breakpoint 2, main () at ref2.cpp:13
13 a= 2;
1: x/i $pc
=> 0x804868d <main()+153>: movl $0x2,0x10(%esp)
Breakpoint 3, main () at ref2.cpp:18
18 refa= 3;
1: x/i $pc
=> 0x8048705 <main()+273>: mov 0x14(%esp),%eax
(gdb) si
0x08048709 18 refa = 3;
1: x/i $pc
=> 0x8048709 <main()+277>: movl $0x3,(%eax)
22 *ptra= 3;
1: x/i $pc
=> 0x804877f <main()+395>: mov 0x18(%esp),%eax
(gdb) si
0x08048783 22 *ptra = 3;
1: x/i $pc
=> 0x8048783 <main()+399>: movl $0x3,(%eax)
可以看到引用和指针,从定义到赋值,实现都是一样的。
虽然引用和指针的意义,认为差不多,但是使用方法还是有差别的,想获得右值,引用直接用变量名,指针要加*操作符。而对引用使用*操作是不允许的。
另外,不同于指针,引用在声明的时候必须初始化,
但引用可能只能一次初始化而不能改变引用“目标”吗?
至少通过如下方法是不能的:
int a = 1;
int b = 2;
int &refa = a;
refa = b;
这相当于赋值为b,即赋值为2,连a的值都会变成2.
&refa = &b;
也是不可能的,因为&refa不是左值。
refa = &b;
更不对了,因为这也相当于赋值,不过不是2了,是b的地址(打印成10进制,类似于-1075934160这种),并且,需要强制转换:
refa = (int)&b;
说再多都是YY,实践出真知~!
围绕我的”引用即指针“的理念,再做一个摸索,既然认为引用是指针了,那么sizeof任何指针,包括double的,肯定都是4(我的32位机)。我定义一个double的引用,看看sizeof结果如何(右侧为输出结果):
这个结果倒是没夸张到直接让ref变成pointer。sizeof(refd)还是按普通的double来算大小,而不是直接按指针来算的。但是也情有可原吧,都说了,虽然他的底层实现和指针一样,但是sizeof()需要的是返回类型,它的返回类型??即”操作级别“,还是比指针要低的。
最后:到底怎样理解引用更好?
首先,不太同意“引用就是一个别名,不占用内存空间“的说法,至少这句话可以再严谨点??”引用不为值再去开辟一个地址空间,但是其本身要占用空间~!“
奇了怪了,引用确实占用栈空间,也确实是存储了目标变量的地址~~~那既然有空间,就应该和指针一样,我改变你的值不就等于改变你的指向了么?
但是,因为它和指针不在同一个“操作级别”上,它的”值“又不是地址,也不能像指针那样改变他的指向。
(“操作级别”是通过存储内容来判定的,比如普通变量的存储内容是“值”,而指针的存储内容是“地址”,可以通过指针独特的“*”操作来判断这个“级别”)
个人倾向于认为引用本身就是一种指针,至于他又不能像指针一样进行重定向等操作,觉得这些完全是语言级别或者说编译器的刻意限制,只是一种规则,没有其他原因。
再次怀疑人生??编译器的本质如何?到底什么叫做编程语言?各层语言界限如何?从这么多的实践操作经验来总结,似乎也逐渐理解了些,如果再去看看《编译原理》,或许会有所收获。
本文不探讨罗列引用的概念,什么函数传参之类的,这些基础概念和用法很容易搜到~!
本文主要探讨引用和指针在C语言的下一层??即汇编或者确切的说是伪汇编(AT&T伪汇编都一样的代码,你指望下层x86汇编还能不一样么~)??的实现过程,来摸索一下他们的特点与本质。
首先,引用(Reference)在C中没有,是C++ 才有的概念~! 要用g++编译器。
定义:引用就是某个目标变量的“别名”(alias)
在我看来,这个“目标变量”也要加上引号,看“目标变量”到底是怎么定义的了。如果“目标变量”由变量名和值组成,那引用应该是不包含“变量名”这部分的,说白了,觉得他就是一个“新变量”,只是他和原变量的“值”(即,目标地址,存储内容)是共用的。
实例测试:
用g++编译,gdb调试:
可以看到,让refa引用a的过程,其实就是提取地址(lea),并且占用了栈空间。和指针的实现是一模一样的。不管你“理论上”怎么说,至少在实现上(至少在linux的实现上),他就是指针。
可以看到,操作都是直接或者间接的对a的原地址0x10(%esp)进行操作,这个没什么问题。但是说引用不占地址是错误的,作为一个“指针”他至少占用4字节吧~!
这是代码后续的赋值操作:
Breakpoint 2, main () at ref2.cpp:13
13 a= 2;
1: x/i $pc
=> 0x804868d <main()+153>: movl $0x2,0x10(%esp)
Breakpoint 3, main () at ref2.cpp:18
18 refa= 3;
1: x/i $pc
=> 0x8048705 <main()+273>: mov 0x14(%esp),%eax
(gdb) si
0x08048709 18 refa = 3;
1: x/i $pc
=> 0x8048709 <main()+277>: movl $0x3,(%eax)
22 *ptra= 3;
1: x/i $pc
=> 0x804877f <main()+395>: mov 0x18(%esp),%eax
(gdb) si
0x08048783 22 *ptra = 3;
1: x/i $pc
=> 0x8048783 <main()+399>: movl $0x3,(%eax)
可以看到引用和指针,从定义到赋值,实现都是一样的。
虽然引用和指针的意义,认为差不多,但是使用方法还是有差别的,想获得右值,引用直接用变量名,指针要加*操作符。而对引用使用*操作是不允许的。
另外,不同于指针,引用在声明的时候必须初始化,
但引用可能只能一次初始化而不能改变引用“目标”吗?
至少通过如下方法是不能的:
int a = 1;
int b = 2;
int &refa = a;
refa = b;
这相当于赋值为b,即赋值为2,连a的值都会变成2.
&refa = &b;
也是不可能的,因为&refa不是左值。
refa = &b;
更不对了,因为这也相当于赋值,不过不是2了,是b的地址(打印成10进制,类似于-1075934160这种),并且,需要强制转换:
refa = (int)&b;
围绕我的”引用即指针“的理念,再做一个摸索。既然认为引用是指针了,那么sizeof任何指针,包括double的,肯定都是4(我的32位机)。我定义一个double的引用,看看sizeof结果如何(右侧为输出结果):
这个结果倒是没夸张到直接让ref变成pointer。sizeof(refd)还是按普通的double来算大小,而不是直接按指针来算的。但是也情有可原吧,都说了,虽然他的底层实现和指针一样,但是sizeof()需要的是返回类型,它的返回类型??即”操作级别“,还是比指针要低的,和普通的变量相仿。
最后:到底怎样理解引用更好?
首先,不太同意“引用就是一个别名,不占用内存空间“的说法,至少这句话可以再严谨点??”引用不为值再去开辟一个地址空间,但是其本身要占用空间~!“
奇了怪了,引用确实占用栈空间,也确实是存储了目标变量的地址~~~那既然有空间,就应该和指针一样,我改变你的值不就等于改变你的指向了么?
但是,因为它和指针不在同一个“操作级别”上,它的”值“又不是地址,也不能像指针那样改变他的指向。
(“操作级别”是通过存储内容来判定的,比如普通变量的存储内容是“值”,而指针的存储内容是“地址”,可以通过指针独特的“*”操作来判断这个“级别”)
个人倾向于认为引用本身就是一种指针,至于他又不能像指针一样进行重定向等操作,觉得这些完全是语言级别或者说编译器的刻意限制,只是一种规则,没有其他原因。
再次怀疑人生??反正翻译成下层的东西,都是那点破事,转换成最后就是一些地址一些寄存器,你能找到地址你就能改(不能改的话,又是哪层编译器或者汇编器限制你的呢?)~!那么,编译器的本质如何?到底什么叫做编程语言?各层语言界限如何?从这么多的实践操作经验来总结,似乎也逐渐理解了些,如果此时再去看看《编译原理》,或许会有所收获。
完~!
------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ---------------
OTHER:
------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ------------------------ ---------------
写的是关于引用的,但是通过用gdb调试,个人还是有其他方面的收获:
例如,AT&T汇编中括号的含义,目测带括号是取地址,不带括号是原寄存器,好像和之前《计算机组成原理》的伪指令规则差不多。
对比:
存入数值到eax寄存器??用%eax。
存入数值到eax寄存器所储存的内存地址处??用(%eax)。
esp的操作同样如此:比如0x18(%esp)应该是从esp取出内存地址,再加上0x18偏移量。
还有,之前看linux的伪汇编,esp一般都是不变的,变的是偏移值,使用类似于0x1c(%esp)的形式进行操作。
每次编译运行,esp起始都是230结尾的(系统决定,具体:0xbffff230),但是通过本例观察,说esp不变是不准确的,执行系统调用,涉及各种库的时候,一直在变:从230到22c、228、224。。。等于栈下移了?在同一函数内不移,切换了才移?
也许试试嵌套个函数什么的也会有发现~
关于栈指针怎么跳转,甚至发生函数跳转时十几个寄存器到底保存上下文需要几个,而这几个压栈又是怎么压的,有一个规则,按顺序压,按倒序取?这又是另外一篇日志要探索的事情了。
其他未完成作业:
看看const的实现又是怎样的,是否有什么特殊的方法规定”只读“,比如转存寄存器之类的。
使用指针作为函数的参数虽然也能达到与使用引用的效果,但是,在被调函数中同样要给形参分配存储单元,且需要重复使用"*指针变量名"的形式进行运算,这很容易产生错误且程序的阅读性较差;另一方面,在主调函数的调用点处,必须用变量的地址作为实参。而引用更容易使用,更清晰。
(待验证)
相关推荐
在C++编程语言中,指针和引用是两种非常关键的概念,它们都允许我们间接访问内存中的对象。然而,它们之间存在着本质的区别,理解和掌握这些差异对于编写高效、安全的代码至关重要。 首先,指针是一个变量,它存储...
引用不是独立的对象,而是现有对象的另一种访问方式。它在函数参数传递、返回值和某些复杂数据结构的操作中特别有用,因为引用提供了安全且不消耗额外内存的别名。 总的来说,数组和指针是C++中基础且强大的工具,...
在C++中,指针是一个变量,它存储的是另一个变量的内存地址。例如,当声明一个整型指针`int* p`,我们实际上创建了一个可以保存整型变量地址的变量`p`。通过`*p`,我们可以访问和修改指针所指向的内存位置上的值。在...
C++template.ppt文件可能包含有关C++模板的进一步信息,模板是C++中另一种强大的工具,允许我们创建泛型代码,以实现更高的代码复用和灵活性。模板可以用于创建泛型函数和类,支持不同类型的参数,使得算法和数据...
在C++中,指针是一个变量,其存储的是另一个变量的地址。通过指针,我们可以间接访问和修改该地址所指向的数据。这使得指针成为一种强大的工具,但也带来了潜在的风险,如空指针引用、未初始化的指针和悬挂指针等...
**指针**是一种特殊的变量,它不直接存储数据,而是存储另一个变量的内存地址。这使得指针成为了一种强大的工具,用于处理复杂的数据结构,如链表、树、图等。在C++中,通过使用`*`操作符可以定义指针类型,例如`int...
引用不是一个独立的实体,它只是一个现有变量的另一个名字,引用在声明时必须被赋值,并且在程序的运行过程中不能改变引用的对象。 2. **初始化** - **指针**:指针在声明时可以不初始化,但未初始化的指针不能...
C++中的指针和引用是两种非常重要的编程概念,它们都是用来间接访问内存中的对象,但有着本质的区别和各自的用途。 首先,指针是一个变量,它存储了一个内存地址,这个地址指向另一个对象。指针可以被赋值为NULL,...
- **不可再绑定**:一旦一个引用被绑定到一个变量上,就不能再次绑定到另一个变量。 - **不占用存储空间**:引用本身并不占用额外的存储空间,它只是指向已存在的变量。 - **求地址操作**:对引用求地址实际上是...
在C#程序设计中,引用被用来作为访问对象的另一种方式,类似于C++中的引用。然而,尽管两者在概念上有相似之处,但它们在实际应用中存在一些关键的差异。 首先,我们要理解什么是引用。引用本质上是一个别名,它...
引用和指针虽然都可以用来间接访问另一个对象,但它们之间存在本质差异: 1. **引用必须初始化**:引用在定义时必须绑定到一个存在的对象上,而指针则可以在任何时候初始化为指向任何对象,甚至可以指向`NULL`。 2...
常引用(Const Reference)是另一种形式的引用,它通过在引用声明前加上`const`关键字,如`const int &ra = a;`。常引用不能用来修改目标变量的值,增强了代码的健壮性。例如,尝试通过常引用`ra`修改`a`的值会引发...
在C++编程语言中,引用(Reference)是一个非常重要的特性,它为程序员提供了另一种方式来访问和操作已存在的变量。引用不同于指针,它更像是一个变量的别名,一旦引用被初始化指向某个变量,就不能再改变引用的目标...
指针是一种变量,它存储的是另一个变量或数据结构的内存地址。通过指针,可以直接访问和操作该地址处的数据,这使得指针成为动态内存分配和复杂数据结构(如链表、树等)管理的基础工具。 ### 数组与指针的异同点 ...
C++中的引用是一种特殊的变量,它并不是一个新的数据类型,而是已存在变量的别名。引用一旦初始化后,就不能再改变它所引用的对象。以下是关于C++引用的深入理解: 1. **引用的本质** - 引用在内存中可能表现为一...
指针是C和C++中的一种特殊类型的数据,它存储的是一个内存地址,该地址指向程序中的另一个变量。理解指针可以帮助我们编写更高效、更灵活的代码,尤其是在处理大型数据结构、动态内存分配和函数参数传递时。 1. **...
指针是一种特殊的变量,它可以存储另一个变量的地址。这意味着指针变量中保存的是地址而不是具体的值。例如,`int *p;`声明了一个名为`p`的指针变量,它能够存储指向整数类型的地址。 - **声明与初始化** 可以...
C/C++还支持多级指针,即指针指向的变量是另一个指针。例如,我们可以声明一个指向指针的指针: ```cpp int **ptrToPtr; int *ptr = new int(10); // 动态分配内存 ptrToPtr = &ptr; // ptrToPtr指向ptr ``` 五、...
指针本质上是一个变量,这个变量存储的是另一个变量的内存地址,而不是值本身。通过指针,我们可以高效地进行数据传递、动态内存管理、数组和字符串操作等任务。 首先,我们要理解指针的定义。在C++中,可以定义两...