转载:http://www.ibm.com/developerworks/cn/java/j-lo-optmizestring/index.html
简介: String 方法用于文本分析及大量字符串处理时会对内存性能造成不可低估的影响。我们在一个大文本数据分析的项目中(我们统计一个约 300MB 的 csv 文件中所有单词出现的次数)发现,用于存放结果的 Collection 占用了几百兆的内存,远远超出唯一单词总数 20000 个。 本文将通过分析 String 在 JVM 中的存储结构,以及常见 String 操作对内存的影响阐述问题产生的原因及解决。.
然而,一个 Java 对象实际还会占用些额外的空间,如:对象的 class 信息、ID、在虚拟机中的状态。在 Oracle JDK 的 Hotspot 虚拟机中,一个普通的对象需要额外 8 个字节。
如果对于 String(JDK 6)的成员变量声明如下:
private final char value[]; private final int offset; private final int count; private int hash;
那么因该如何计算该 String 所占的空间?
首先计算一个空的 char 数组所占空间,在 Java 里数组也是对象,因而数组也有对象头,故一个数组所占的空间为对象头所占的空间加上数组长度,即 8 + 4 = 12 字节 , 经过填充后为 16 字节。
那么一个空 String 所占空间为:
对象头(8 字节)+ char 数组(16 字节)+ 3 个 int(3 × 4 = 12 字节)+1 个 char 数组的引用 (4 字节 ) = 40 字节。
因此一个实际的 String 所占空间的计算公式如下:
8*( ( 8+2*n+4+12)+7 ) / 8 = 8*(int) ( ( ( (n) *2 )+43) /8 )
其中,n 为字符串长度。
在我们的大规模文本分析的案例中,程序需要统计一个 300MB 的 csv 文件所有单词的出现次数,分析发现共有 20,000 左右的唯一单词,假设每个单词平均包含 15 个字母,这样根据上述公式,一个单词平均占用 75 bytes. 那么这样 75 * 20,000 = 1500000,即约为 1.5M 左右。但实际发现有上百兆的空间被占用。 实际使用的内存之所以与预估的产生如此大的差异是因为程序大量使用 String.split()
或 String.substring()
来获取单词。在 JDK 1.6 中 String.substring(int, int)
的源码为:
public String substring(int beginIndex, int endIndex) { if (beginIndex < 0) { throw new StringIndexOutOfBoundsException(beginIndex); } if (endIndex > count) { throw new StringIndexOutOfBoundsException(endIndex); } if (beginIndex > endIndex) { throw new StringIndexOutOfBoundsException(endIndex - beginIndex); } return ((beginIndex == 0) && (endIndex == count)) ? this : new String(offset + beginIndex, endIndex - beginIndex, value); }
调用的 String 构造函数源码为:
String(int offset, int count, char value[]) { this.value = value; this.offset = offset; this.count = count; }
仔细观察粗体这行代码我们发现 String.substring()
所返回的 String 仍然会保存原始 String, 这就是 20,000 个平均长度的单词竟然占用了上百兆的内存的原因。 一个 csv 文件中每一行都是一份很长的数据,包含了上千的单词,最后被 String.split()
或 String.substring()
截取出的每一个单词仍旧包含了其原先所在的上下文中,因而导致了出乎意料的大量的内存消耗。
当然,JDK String 的源码设计当然有着其合理之处,对于通过 String.split()
或 String.substring()
截取出大量 String 的操作,这种设计在很多时候可以很大程度的节省内存,因为这些 String 都复用了原始 String,只是通过 int 类型的 start, end 等值来标识每一个 String。 而对于我们的案例,从一个巨大的 String 截取少数 String 为以后所用,这样的设计则造成大量冗余数据。 因此有关通过 String.split()
或 String.substring()
截取 String 的操作的结论如下:
- 对于从大文本中截取少量字符串的应用,
String.substring()
将会导致内存的过度浪费。 - 对于从一般文本中截取一定数量的字符串,截取的字符串长度总和与原始文本长度相差不大,现有的
String.substring()
设计恰好可以共享原始文本从而达到节省内存的目的。
既然导致大量内存占用的根源是 String.substring()
返回结果中包含大量原始 String,那么一个显而易见的减少内存浪费的的途径就是去除这些原始 String。办法有很多种,在此我们采取比较直观的一种,即再次调用 newString
构造一个的仅包含截取出的字符串的 String,我们可调用 String.
toCharArray
()
方法:
String newString = new String(smallString.toCharArray());
举一个极端例子,假设要从一个字符串中获取所有连续的非空子串,字符串长度为 n,如果用 JDK 本身提供的 String.substring() 方
法,则总共的连续非空子串个数为:
n+(n-1)+(n-2)+ … +1 = n*(n+1)/2 =O(n2 ) |
由于每个子串所占的空间为常数,故空间复杂度也为 O(n2)。
如果用本文建议的方法,即构造一个内容相同的新的字符串,则所需空间正比于子串的长度,则所需空间复杂度为:
1*n+2*(n-1)+3*(n-2)+ … +n*1 = (n3 +3*n2 +2*n)/6 = O(n3 ) |
所以,从以上定量的分析看来,当需要截取的字符串长度总和大于等于原始文本长度,本文所建议的方法带来的空间复杂度反而高了,而现有的 String.substring()
设计恰好可以共享原始文本从而达到节省内存的目的。反之,当所需要截取的字符串长度总和远小于原始文本长度时,用本文所推荐的方法将在很大程度上节省内存,在大文本数据处理中其优势显而易见。
以上我们描述了在我们的大量文本分析案例中调用 String 的 subString
方法
导致内存消耗的问题,下面再列举一些其他将导致内存浪费的 String 的 API 的使用:
在拼接静态字符串时,尽量用 +,因为通常编译器会对此做优化,如:
String test = "this " + "is " + "a " + "test " + "string" |
编译器会把它视为:
String test = "this is a test string" |
在拼接动态字符串时,尽量用 StringBuffer
或 StringBuilder
的 append
,这样可以减少构造过多的临时 String 对象。
常见的创建一个 String 可以用赋值操作符"=" 或用 new 和相应的构造函数。初学者一定会想这两种有何区别,举例如下:
String a1 = “Hello”; String a2 = new String(“Hello”); |
第一种方法创建字符串时 JVM 会查看内部的缓存池是否已有相同的字符串存在:如果有,则不再使用构造函数构造一个新的字符串,直接返回已有的字符串实例;若不存在,则分配新的内存给新创建的字符串。
第二种方法直接调用构造函数来创建字符串,如果所创建的字符串在字符串缓存池中不存在则调用构造函数创建全新的字符串,如果所创建的字符串在字符串缓存池中已有则再拷贝一份到 Java 堆中。
尽管这是一个简单明显的例子,然而在实际项目中编程者却不那么容易洞察因为这两种方式的选择而带来的性能问题。
仍然以之前的从 csv 文件中截取 String 为例,先前我们通过用 new String() 去除返回的 String 中附带的原始 String 的方法优化了 subString
导致的内存消耗问题。然而,当我们下意识地使用 newString
去构造一个全新的字符串而不是用赋值符来创建(重用)一个字符串时,就导致了另一个潜在的性能问题,即:重复创建大量相同的字符串。说到这里,您也许会想到使用缓存池的技术来解决这一问题,大概有如下两种方法:
方法一,使用 String 的 intern()
方法返回 JVM 对字符串缓存池里相应已存在的字符串引用,从而解决内存性能问题,但这个方法并不推荐!原因在于:首先,intern()
所使用的池会是 JVM 中一个全局的池,很多情况下我们的程序并不需要如此大作用域的缓存;其次,intern() 所使用的是 JVM heap 中 PermGen 相应的区域,在 JVM 中 PermGen 是用来存放装载类和创建类实例时用到的元数据。程序运行时所使用的内存绝大部分存放在 JVM heap 的其他区域,过多得使用 intern()
将导致 PermGen 过度增长而最后返回 OutOfMemoryError
,因为垃圾收集器不会对被缓存的 String 做垃圾回收。所以我们建议使用第二种方式。
方法二,用户自己构建缓存,这种方式的优点是更加灵活。创建 HashMap,将需缓存的 String 作为 key 和 value 存放入 HashMap。假设我们准备创建的字符串为 key,将 Map cacheMap 作为缓冲池,那么返回 key 的代码如下:
private String getCacheWord(String key) { String tmp = cacheMap.get(key); if(tmp != null) { return tmp; } else { cacheMap.put(key, key); return key; } } |
本文通过一个实际项目中遇到的因使用 String 而导致的性能问题讲述了 String 在 JVM 中的存储结构,String 的 API 使用可能造成的性能问题以及解决方法。相信这些建议能对处理大文本分析的朋友有所帮助,同时希望文中提到的某些优化方法能被举一反三的应用在其他有关 String 的性能优化的场合。
<!-- CMA ID: 815518 --><!-- Site ID: 10 --><!-- XSLT stylesheet used to transform this file: dw-document-html-6.0.xsl -->
=============================
volatile http://www.ibm.com/developerworks/cn/java/j-jtp06197.html
简介: Java™ 语言包含两种内在的同步机制:同步块(或方法)和 volatile 变量。这两种机制的提出都是为了实现代码线程的安全性。其中 Volatile 变量的同步性较差(但有时它更简单并且开销更低),而且其使用也更容易出错。在这期的 Java 理论与实践 中,Brian Goetz 将介绍几种正确使用 volatile 变量的模式,并针对其适用性限制提出一些建议。
Java 语言中的 volatile 变量可以被看作是一种 “程度较轻的 synchronized
”;与 synchronized
块相比,volatile 变量所需的编码较少,并且运行时开销也较少,但是它所能实现的功能也仅是 synchronized
的一部分。本文介绍了几种有效使用 volatile 变量的模式,并强调了几种不适合使用 volatile 变量的情形。
锁提供了两种主要特性:互斥(mutual exclusion) 和可见性(visibility)。互斥即一次只允许一个线程持有某个特定的锁,因此可使用该特性实现对共享数据的协调访问协议,这样,一次就只有一个线程能够使用该共享数据。可见性要更加复杂一些,它必须确保释放锁之前对共享数据做出的更改对于随后获得该锁的另一个线程是可见的 —— 如果没有同步机制提供的这种可见性保证,线程看到的共享变量可能是修改前的值或不一致的值,这将引发许多严重问题。
Volatile 变量具有 synchronized
的可见性特性,但是不具备原子特性。这就是说线程能够自动发现 volatile 变量的最新值。Volatile 变量可用于提供线程安全,但是只能应用于非常有限的一组用例:多个变量之间或者某个变量的当前值与修改后值之间没有约束。因此,单独使用 volatile 还不足以实现计数器、互斥锁或任何具有与多个变量相关的不变式(Invariants)的类(例如 “start <=end”)。
出于简易性或可伸缩性的考虑,您可能倾向于使用 volatile 变量而不是锁。当使用 volatile 变量而非锁时,某些习惯用法(idiom)更加易于编码和阅读。此外,volatile 变量不会像锁那样造成线程阻塞,因此也很少造成可伸缩性问题。在某些情况下,如果读操作远远大于写操作,volatile 变量还可以提供优于锁的性能优势。
您只能在有限的一些情形下使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
- 对变量的写操作不依赖于当前值。
- 该变量没有包含在具有其他变量的不变式中。
实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。
第一个条件的限制使 volatile 变量不能用作线程安全计数器。虽然增量操作(x++
)看上去类似一个单独操作,实际上它是一个由读取-修改-写入操作序列组成的组合操作,必须以原子方式执行,而 volatile 不能提供必须的原子特性。实现正确的操作需要使 x
的值在操作期间保持不变,而 volatile 变量无法实现这点。(然而,如果将值调整为只从单个线程写入,那么可以忽略第一个条件。)
大多数编程情形都会与这两个条件的其中之一冲突,使得 volatile 变量不能像 synchronized
那样普遍适用于实现线程安全。清单 1 显示了一个非线程安全的数值范围类。它包含了一个不变式 —— 下界总是小于或等于上界。
@NotThreadSafe public class NumberRange { private int lower, upper; public int getLower() { return lower; } public int getUpper() { return upper; } public void setLower(int value) { if (value > upper) throw new IllegalArgumentException(...); lower = value; } public void setUpper(int value) { if (value < lower) throw new IllegalArgumentException(...); upper = value; } } |
这种方式限制了范围的状态变量,因此将 lower
和 upper 字段定义为 volatile 类型不能够充分实现类的线程安全;从而仍然需要使用同步。否则,如果凑巧两个线程在同一时间使用不一致的值执行 setLower
和 setUpper
的话,则会使范围处于不一致的状态。例如,如果初始状态是 (0, 5)
,同一时间内,线程 A 调用 setLower(4)
并且线程 B 调用 setUpper(3)
,显然这两个操作交叉存入的值是不符合条件的,那么两个线程都会通过用于保护不变式的检查,使得最后的范围值是 (4, 3)
—— 一个无效值。至于针对范围的其他操作,我们需要使 setLower()
和 setUpper()
操作原子化 —— 而将字段定义为 volatile 类型是无法实现这一目的的。
使用 volatile 变量的主要原因是其简易性:在某些情形下,使用 volatile 变量要比使用相应的锁简单得多。使用 volatile 变量次要原因是其性能:某些情况下,volatile 变量同步机制的性能要优于锁。
很难做出准确、全面的评价,例如 “X 总是比 Y 快”,尤其是对 JVM 内在的操作而言。(例如,某些情况下 VM 也许能够完全删除锁机制,这使得我们难以抽象地比较 volatile
和 synchronized
的开销。)就是说,在目前大多数的处理器架构上,volatile 读操作开销非常低 —— 几乎和非 volatile 读操作一样。而 volatile 写操作的开销要比非 volatile 写操作多很多,因为要保证可见性需要实现内存界定(Memory Fence),即便如此,volatile 的总开销仍然要比锁获取低。
volatile 操作不会像锁一样造成阻塞,因此,在能够安全使用 volatile 的情况下,volatile 可以提供一些优于锁的可伸缩特性。如果读操作的次数要远远超过写操作,与锁相比,volatile 变量通常能够减少同步的性能开销。
很多并发性专家事实上往往引导用户远离 volatile 变量,因为使用它们要比使用锁更加容易出错。然而,如果谨慎地遵循一些良好定义的模式,就能够在很多场合内安全地使用 volatile 变量。要始终牢记使用 volatile 的限制 —— 只有在状态真正独立于程序内其他内容时才能使用 volatile —— 这条规则能够避免将这些模式扩展到不安全的用例。
也许实现 volatile 变量的规范使用仅仅是使用一个布尔状态标志,用于指示发生了一个重要的一次性事件,例如完成初始化或请求停机。
很多应用程序包含了一种控制结构,形式为 “在还没有准备好停止程序时再执行一些工作”,如清单 2 所示:
volatile boolean shutdownRequested; ... public void shutdown() { shutdownRequested = true; } public void doWork() { while (!shutdownRequested) { // do stuff } } |
很可能会从循环外部调用 shutdown()
方法 —— 即在另一个线程中 —— 因此,需要执行某种同步来确保正确实现 shutdownRequested
变量的可见性。(可能会从 JMX 侦听程序、GUI 事件线程中的操作侦听程序、通过 RMI 、通过一个 Web 服务等调用)。然而,使用 synchronized
块编写循环要比使用清单 2 所示的 volatile 状态标志编写麻烦很多。由于 volatile 简化了编码,并且状态标志并不依赖于程序内任何其他状态,因此此处非常适合使用 volatile。
这种类型的状态标记的一个公共特性是:通常只有一种状态转换;shutdownRequested
标志从 false
转换为 true
,然后程序停止。这种模式可以扩展到来回转换的状态标志,但是只有在转换周期不被察觉的情况下才能扩展(从 false
到 true
,再转换到 false
)。此外,还需要某些原子状态转换机制,例如原子变量。
模式 #2:一次性安全发布(one-time safe publication)
缺乏同步会导致无法实现可见性,这使得确定何时写入对象引用而不是原语值变得更加困难。在缺乏同步的情况下,可能会遇到某个对象引用的更新值(由另一个线程写入)和该对象状态的旧值同时存在。(这就是造成著名的双重检查锁定(double-checked-locking)问题的根源,其中对象引用在没有同步的情况下进行读操作,产生的问题是您可能会看到一个更新的引用,但是仍然会通过该引用看到不完全构造的对象)。
实现安全发布对象的一种技术就是将对象引用定义为 volatile 类型。清单 3 展示了一个示例,其中后台线程在启动阶段从数据库加载一些数据。其他代码在能够利用这些数据时,在使用之前将检查这些数据是否曾经发布过。
public class BackgroundFloobleLoader { public volatile Flooble theFlooble; public void initInBackground() { // do lots of stuff theFlooble = new Flooble(); // this is the only write to theFlooble } } public class SomeOtherClass { public void doWork() { while (true) { // do some stuff... // use the Flooble, but only if it is ready if (floobleLoader.theFlooble != null) doSomething(floobleLoader.theFlooble); } } } |
如果 theFlooble
引用不是 volatile 类型,doWork()
中的代码在解除对 theFlooble
的引用时,将会得到一个不完全构造的 Flooble
。
该模式的一个必要条件是:被发布的对象必须是线程安全的,或者是有效的不可变对象(有效不可变意味着对象的状态在发布之后永远不会被修改)。volatile 类型的引用可以确保对象的发布形式的可见性,但是如果对象的状态在发布后将发生更改,那么就需要额外的同步。
模式 #3:独立观察(independent observation)
安全使用 volatile 的另一种简单模式是:定期 “发布” 观察结果供程序内部使用。例如,假设有一种环境传感器能够感觉环境温度。一个后台线程可能会每隔几秒读取一次该传感器,并更新包含当前文档的 volatile 变量。然后,其他线程可以读取这个变量,从而随时能够看到最新的温度值。
使用该模式的另一种应用程序就是收集程序的统计信息。清单 4 展示了身份验证机制如何记忆最近一次登录的用户的名字。将反复使用 lastUser
引用来发布值,以供程序的其他部分使用。
清单 4. 将 volatile 变量用于多个独立观察结果的发布
public class UserManager { public volatile String lastUser; public boolean authenticate(String user, String password) { boolean valid = passwordIsValid(user, password); if (valid) { User u = new User(); activeUsers.add(u); lastUser = user; } return valid; } } |
该模式是前面模式的扩展;将某个值发布以在程序内的其他地方使用,但是与一次性事件的发布不同,这是一系列独立事件。这个模式要求被发布的值是有效不可变的 —— 即值的状态在发布后不会更改。使用该值的代码需要清楚该值可能随时发生变化。
volatile bean 模式适用于将 JavaBeans 作为“荣誉结构”使用的框架。在 volatile bean 模式中,JavaBean 被用作一组具有 getter 和/或 setter 方法 的独立属性的容器。volatile bean 模式的基本原理是:很多框架为易变数据的持有者(例如 HttpSession
)提供了容器,但是放入这些容器中的对象必须是线程安全的。
在 volatile bean 模式中,JavaBean 的所有数据成员都是 volatile 类型的,并且 getter 和 setter 方法必须非常普通 —— 除了获取或设置相应的属性外,不能包含任何逻辑。此外,对于对象引用的数据成员,引用的对象必须是有效不可变的。(这将禁止具有数组值的属性,因为当数组引用被声明为 volatile
时,只有引用而不是数组本身具有 volatile 语义)。对于任何 volatile 变量,不变式或约束都不能包含 JavaBean 属性。清单 5 中的示例展示了遵守 volatile bean 模式的 JavaBean:
清单 5. 遵守 volatile bean 模式的 Person 对象
@ThreadSafe public class Person { private volatile String firstName; private volatile String lastName; private volatile int age; public String getFirstName() { return firstName; } public String getLastName() { return lastName; } public int getAge() { return age; } public void setFirstName(String firstName) { this.firstName = firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public void setAge(int age) { this.age = age; } } |
前面几节介绍的模式涵盖了大部分的基本用例,在这些模式中使用 volatile 非常有用并且简单。这一节将介绍一种更加高级的模式,在该模式中,volatile 将提供性能或可伸缩性优势。
volatile 应用的的高级模式非常脆弱。因此,必须对假设的条件仔细证明,并且这些模式被严格地封装了起来,因为即使非常小的更改也会损坏您的代码!同样,使用更高级的 volatile 用例的原因是它能够提升性能,确保在开始应用高级模式之前,真正确定需要实现这种性能获益。需要对这些模式进行权衡,放弃可读性或可维护性来换取可能的性能收益 —— 如果您不需要提升性能(或者不能够通过一个严格的测试程序证明您需要它),那么这很可能是一次糟糕的交易,因为您很可能会得不偿失,换来的东西要比放弃的东西价值更低。
目前为止,您应该了解了 volatile 的功能还不足以实现计数器。因为 ++x
实际上是三种操作(读、添加、存储)的简单组合,如果多个线程凑巧试图同时对 volatile 计数器执行增量操作,那么它的更新值有可能会丢失。
然而,如果读操作远远超过写操作,您可以结合使用内部锁和 volatile 变量来减少公共代码路径的开销。清单 6 中显示的线程安全的计数器使用 synchronized
确保增量操作是原子的,并使用 volatile
保证当前结果的可见性。如果更新不频繁的话,该方法可实现更好的性能,因为读路径的开销仅仅涉及 volatile 读操作,这通常要优于一个无竞争的锁获取的开销。
清单 6. 结合使用 volatile 和 synchronized 实现 “开销较低的读-写锁”
@ThreadSafe public class CheesyCounter { // Employs the cheap read-write lock trick // All mutative operations MUST be done with the 'this' lock held @GuardedBy("this") private volatile int value; public int getValue() { return value; } public synchronized int increment() { return value++; } } |
之所以将这种技术称之为 “开销较低的读-写锁” 是因为您使用了不同的同步机制进行读写操作。因为本例中的写操作违反了使用 volatile 的第一个条件,因此不能使用 volatile 安全地实现计数器 —— 您必须使用锁。然而,您可以在读操作中使用 volatile 确保当前值的可见性,因此可以使用锁进行所有变化的操作,使用 volatile 进行只读操作。其中,锁一次只允许一个线程访问值,volatile 允许多个线程执行读操作,因此当使用 volatile 保证读代码路径时,要比使用锁执行全部代码路径获得更高的共享度 —— 就像读-写操作一样。然而,要随时牢记这种模式的弱点:如果超越了该模式的最基本应用,结合这两个竞争的同步机制将变得非常困难。
与锁相比,Volatile 变量是一种非常简单但同时又非常脆弱的同步机制,它在某些情况下将提供优于锁的性能和伸缩性。如果严格遵循 volatile 的使用条件 —— 即变量真正独立于其他变量和自己以前的值 —— 在某些情况下可以使用 volatile
代替 synchronized
来简化代码。然而,使用 volatile
的代码往往比使用锁的代码更加容易出错。本文介绍的模式涵盖了可以使用 volatile
代替 synchronized
的最常见的一些用例。遵循这些模式(注意使用时不要超过各自的限制)可以帮助您安全地实现大多数用例,使用 volatile 变量获得更佳性能。
相关推荐
### PostgreSQL数字结尾字符串分割排序详解 #### 功能概述 本文档旨在详细介绍如何通过自定义函数在PostgreSQL数据库中实现一种特殊的排序方式:对于以数字结尾的字符串,首先将其分为两部分,一部分为非数字字符串...
本篇文章主要介绍如何判断一个字符串是否为有效的IPv4地址。 #### 二、IPv4地址格式 IPv4地址由四个十进制数字组成,每个数字范围是0到255,并且各个数字之间用句点"."分隔开。例如:`192.168.1.1`。有效的IPv4地址...
在本文中,我们将深入探讨如何使用MSP430F149微控制器进行串口通信,特别是中断接收字符串并在屏幕上回显的功能。MSP430F149是德州仪器(TI)公司推出的一款超低功耗、16位微控制器,广泛应用于各种嵌入式系统,包括...
- 对于数组和字符串等复合数据类型,`const` 的用法需要特别注意,以确保正确地限定数据的可变性。 #### 二、Extern(外部声明) `extern` 关键字用于声明一个变量或者函数是在其他源文件中定义的。这意味着当前...
这个任务涉及到文件读取、字符串处理、正则表达式以及对Java语法的深入理解。 首先,我们需要理解如何从控制台获取Java源代码。在Java中,我们可以使用`System.in`来读取标准输入流,通常用户可以通过键盘输入源...
String 对象的字符串处理方法包括:charAt() 获取字符串中第 N 个位置的字符、charCodeAt() 获取字符串中第 N 个位置字符的 Unicode 编码、concat() 将 string...stringN 转换为字符串并拼接在该字符串对象的字符串...
在SQL Server中,`ISDATE`是一个非常实用的函数,用于检查一个字符串是否能被解析为合法的日期格式。而在PostgreSQL数据库系统中,并没有内置与SQL Server完全相同的`ISDATE`功能。然而,我们可以自定义一个类似的...
例如,当你需要在字符串中插入一个双引号时,由于双引号本身是字符串的结束标志,所以必须使用转义字符`\`来表示它,如`"这是一个包含\"双引号\"的字符串"`。 此外,Java中的字符串常量都是以双引号包围的,如果...
1. 字符串逆序:将一个字符串逆序可以使用递归或迭代方法实现,例如使用函数调用自身来实现字符串的逆序。 2. 链表逆序:将一个链表逆序可以使用迭代方法实现,例如使用指针来遍历链表并将其逆序。 3. 位操作:...
【嵌入式软件工程师笔试题】的文档涵盖了多个与嵌入式系统开发相关的知识点,包括字符串处理、链表操作、位操作、数据类型、指针、内存管理、编译器特性以及操作系统概念等。以下是对这些知识点的详细解析: 1. ...
本文档总结了C语言基本代码的各种知识点,涵盖了变量声明、数据类型、运算符、控制结构、函数、数组、字符串、输入输出等方面。 变量声明: * auto:声明自动变量 * double:声明双精度变量或函数 * float:声明...
- **3.1 字符串在计算机内部的存储方式**:字符串在内存中是以字符数组的形式存储的,最后一个字符是字符串结束标志 `\0`。 - **3.2 printf函数,putchar函数**:`printf` 用于格式化输出,`putchar` 用于输出单个...
在C语言中,字符串以`\0`作为结束符,所以`"Name\\Address"\n`这个字符串包含13个可打印字符(包括转义字符`\\`和`\n`),加上结束符`\0`,一共14字节。 (373)字符串拷贝的代码可以填写为:`s[i]`。这是一个基本...
- `stpcpy`: 复制字符串到另一个字符串,并返回目标字符串的结束位置。 - `strcat`: 连接两个字符串。 - `strchr`: 查找字符串中的字符。 - `strcmp`: 比较两个字符串。 - `strcmpi`: 忽略大小写比较两个字符串...
例如,`String s="a"+"b"+"c"+"d"`实际上在编译后相当于一个字符串常量"abcd",因此只创建了一个`String`对象。如果使用`==`比较两个字符串,比较的是它们的引用,而非内容,因此`s == "abcd"`的结果是`true`。 3. ...
这类题目通常涵盖多个方面,包括但不限于数据类型转换、字符串处理、字符编码与解码等核心概念。以下是对这些知识点的详细说明: 1. **人民币金额数字转换成大写**: 在中国,财务报表中的金额通常需要用大写汉字...
本 README 仅作为快速入门文档。... This means that Redis is fast, but that it is also non-volatile.The implementation of data structures emphasizes memory efficiency, so data structures insid
在PostgreSQL中,标准数据库函数并没有直接提供将二进制字符串转换为十六进制字符串的内建函数。但在实际应用中,进行这种类型转换的需求又是非常常见的,比如在进行数据的校验、加密、解密或者其他需要二进制与十六...
- **STRCSPN函数**:计算一个字符串中不包含另一个字符串中的字符的数量。 - **STRNCAT函数**:连接两个字符串,最多连接指定的字符数。 - **STRNCMP函数**:比较两个字符串的前n个字符。 - **STRNCPY函数**:复制...