转载:http://blog.pfan.cn/zizi/15963.html
桥接模式(Bridge Pattern)
——.NET设计模式系列之九
Terrylee,2006年2月
概述
在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化,那么如何应对这种“多维度的变化”?如何利用面向对象的技术来使得该类型能够轻松的沿着多个方向进行变化,而又不引入额外的复杂度?这就要使用Bridge模式。
意图
将抽象部分与实现部分分离,使它们都可以独立的变化。[GOF 《设计模式》]
结构图

生活中的例子
桥接模式将抽象部分与它的实现分离,使它们能够独立地变化。一个普通的开关控制的电灯、电风扇等等,都是桥接的例子。开关的目的是将设备打开或关闭。实际的开关可以是简单的双刀拉链开关,也可以是调光开关。

桥接模式解说
在创建型模式里面,我曾经提到过抽象与实现,抽象不应该依赖于具体实现细节,实现细节应该依赖于抽象。看下面这幅图:

在这种情况下,如果抽象B稳定,而实现细节b变化,这时用创建型模式来解决没有问题。但是如果抽象B也不稳定,也是变化的,该如何解决?这就要用到Bridge模式了。
我们仍然用日志记录工具这个例子来说明Bridge模式。现在我们要开发一个通用的日志记录工具,它支持数据库记录DatabaseLog和文本文件记录FileLog两种方式,同时它既可以运行在.NET平台,也可以运行在Java平台上。
根据我们的设计经验,应该把不同的日志记录方式分别作为单独的对象来对待,并为日志记录类抽象出一个基类Log出来,各种不同的日志记录方式都继承于该基类:

public abstract class Log
{
public abstract void Write(string log);
}
public class DatabaseLog : Log
{
public override void Write(string log)
{
//......Log Database
}
}
public class TextFileLog : Log
{
public override void Write(string log)
{
//......Log Text File
}
}
另外考虑到不同平台的日志记录,对于操作数据库、写入文本文件所调用的方式可能是不一样的,为此对于不同的日志记录方式,我们需要提供各种不同平台上的实现,对上面的类做进一步的设计得到了下面的结构图:

public class NDatabaseLog : DatabaseLog
{
public override void Write(string log)
{
//......(.NET平台)Log Database
}
}
public class JDatabaseLog : DatabaseLog
{
public override void Write(string log)
{
//......(Java平台)Log Database
}
}
public class NTextFileLog : TextFileLog
{
public override void Write(string log)
{
//......(.NET平台)Log Text File
}
}
public class JTextFileLog : TextFileLog
{
public override void Write(string log)
{
//......(Java平台)Log TextFile
}
}
现在的这种设计方案本身是没有任何错误的,假如现在我们要引入一种新的xml文件的记录方式,则上面的类结构图会变成:

如图中蓝色的部分所示,我们新增加了一个继承于Log基类的子类,而没有修改其它的子类,这样也符合了开放-封闭原则。如果我们引入一种新的平台,比如说我们现在开发的日志记录工具还需要支持Borland平台,此时该类结构又变成了:

同样我们没有修改任何的东西,只是增加了两个继承于DatabaseLog和TextFileLog的子类,这也符合了开放-封闭原则。
但是我们说这样的设计是脆弱的,仔细分析就可以发现,它还是存在很多问题,首先它在遵循开放-封闭原则的同时,违背了类的单一职责原则,即一个类只有一个引起它变化的原因,而这里引起Log类变化的原因却有两个,即日志记录方式的变化和日志记录平台的变化;其次是重复代码会很多,不同的日志记录方式在不同的平台上也会有一部分的代码是相同的;再次是类的结构过于复杂,继承关系太多,难于维护,最后最致命的一点是扩展性太差。上面我们分析的变化只是沿着某一个方向,如果变化沿着日志记录方式和不同的运行平台两个方向变化,我们会看到这个类的结构会迅速的变庞大。
现在该是Bridge模式粉墨登场的时候了,我们需要解耦这两个方向的变化,把它们之间的强耦合关系改成弱联系。我们把日志记录方式和不同平台上的实现分别当作两个独立的部分来对待,对于日志记录方式,类结构图仍然是:

现在我们引入另外一个抽象类ImpLog,它是日志记录在不同平台的实现的基类,结构图如下:

public abstract class ImpLog
{
public abstract void Execute(string msg);
}
public class NImpLog : ImpLog
{
public override void Execute(string msg)
{
//...... .NET平台
}
}
public class JImpLog : ImpLog
{
public override void Execute(string msg)
{
//...... Java平台
}
}
这时对于日志记录方式和不同的运行平台这两个类都可以独立的变化了,我们要做的工作就是把这两部分之间连接起来。那如何连接呢?在这里,Bridge使用了对象组合的方式,类结构图如下:

实现代码如下:
public abstract class Log
{
protected ImpLog implementor;
public ImpLog Implementor
{
set { implementor = value; }
}
public virtual void Write(string log)
{
implementor.Execute(log);
}
}
public class DatabaseLog : Log
{
public override void Write(string log)
{
implementor.Execute(log);
}
}
public class TextFileLog : Log
{
public override void Write(string log)
{
implementor.Execute(log);
}
}
可以看到,通过对象组合的方式,Bridge模式把两个角色之间的继承关系改为了耦合的关系,从而使这两者可以从容自若的各自独立的变化,这也是Bridge模式的本意。再来看一下客户端如何去使用:
class App
{
public static void Main(string[] args)
{
//.NET平台下的Database Log
Log dblog = new DatabaseLog();
dblog.Implementor = new NImpLog();
dblog.Write();
//Java平台下的Text File Log
Log txtlog = new TextFileLog();
txtlog.Implementor = new JImpLog();
txtlog.Write();
}
}
可能有人会担心说,这样不就又增加了客户程序与具体日志记录方式之间的耦合性了吗?其实这样的担心是没有必要的,因为这种耦合性是由于对象的创建所带来的,完全可以用创建型模式去解决,就不是这里我们所讨论的内容了。
最后我们再来考虑一个问题,为什么Bridge模式要使用对象组合的方式而不是用继承呢?如果采用继承的方式,则Log类,ImpLog类都为接口,类结构图如下:

实现代码如下:
public class NDatabaseLog : DatabaseLog, IImpLog
{
//......
}
public class JDatabaseLog : DatabaseLog, IImpLog
{
//......
}
public class NTextFileLog : TextFileLog, IImpLog
{
//......
}
public class JTextFileLog : TextFileLog, IImpLog
{
//......
}
如上图中蓝色的部分所示,它们既具有日志记录方式的特性,也具有接口IimpLog的特性,它已经违背了面向对象设计原则中类的单一职责原则,一个类应当仅有一个引起它变化的原因。所以采用Bridge模式往往是比采用多继承更好的方案。说到这里,大家应该对Bridge模式有一些认识了吧?如果在开发中遇到有两个方向上纵横交错的变化时,应该能够想到使用Bridge模式,当然了,有时候虽然有两个方向上的变化,但是在某一个方向上的变化并不是很剧烈的时候,并不一定要使用Bridge模式。
效果及实现要点
1.Bridge模式使用“对象间的组合关系”解耦了抽象和实现之间固有的绑定关系,使得抽象和实现可以沿着各自的维度来变化。
2.所谓抽象和实现沿着各自维度的变化,即“子类化”它们,得到各个子类之后,便可以任意它们,从而获得不同平台上的不同型号。
3.Bridge模式有时候类似于多继承方案,但是多继承方案往往违背了类的单一职责原则(即一个类只有一个变化的原因),复用性比较差。Bridge模式是比多继承方案更好的解决方法。
4.Bridge模式的应用一般在“两个非常强的变化维度”,有时候即使有两个变化的维度,但是某个方向的变化维度并不剧烈——换言之两个变化不会导致纵横交错的结果,并不一定要使用Bridge模式。
适用性
在以下的情况下应当使用桥梁模式:
1.如果一个系统需要在构件的抽象化角色和具体化角色之间增加更多的灵活性,避免在两个层次之间建立静态的联系。
2.设计要求实现化角色的任何改变不应当影响客户端,或者说实现化角色的改变对客户端是完全透明的。
3.一个构件有多于一个的抽象化角色和实现化角色,系统需要它们之间进行动态耦合。
4.虽然在系统中使用继承是没有问题的,但是由于抽象化角色和具体化角色需要独立变化,设计要求需要独立管理这两者。
总结
Bridge模式是一个非常有用的模式,也非常复杂,它很好的符合了开放-封闭原则和优先使用对象,而不是继承这两个面向对象原则。
参考资料
阎宏,《Java与模式》,电子工业出版社
James W. Cooper,《C#设计模式》,电子工业出版社
Alan Shalloway James R. Trott,《Design Patterns Explained》,中国电力出版社
MSDN WebCast 《C#面向对象设计模式纵横谈(8):Bridge桥接模式(结构型模式)》

- 大小: 7.7 KB

- 大小: 14.9 KB

- 大小: 6 KB

- 大小: 6.1 KB

- 大小: 12.7 KB

- 大小: 17.6 KB

- 大小: 15.8 KB

- 大小: 6.1 KB

- 大小: 6 KB

- 大小: 12.9 KB

- 大小: 18.5 KB
分享到:
相关推荐
SOH-SVM算法:斑点鬣狗优化技术对支持向量机的改进与解析,优化算法助力机器学习:SOH-SVM改进及源码解析与参考,SOH-SVM:斑点鬣狗优化算法改进支持向量机:SOH-SVM。 代码有注释,附源码和参考文献,便于新手理解,~ ,SOH-SVM; 斑点鬣狗优化算法; 代码注释; 源码; 参考文献,SOH-SVM算法优化:附详解代码与参考
美赛教程&建模&数据分析&案例分析
GESPC++3级大纲
电动汽车充电负荷预测:基于出行链分析与OD矩阵的蒙特卡洛模拟研究,电动汽车充电负荷预测:基于出行链分析与OD矩阵的蒙特卡洛模拟方法,电动汽车充电负荷预测,出行链,OD矩阵,蒙特卡洛模拟 ,电动汽车充电负荷预测; 出行链; OD矩阵; 蒙特卡洛模拟,基于出行链的电动汽车充电负荷预测研究:蒙特卡洛模拟与OD矩阵分析
柯尼卡美能达Konica Minolta bizhub 205i 驱动
内容概要:本文全面介绍使用示波器进行一系列电学实验和项目的内容。从基础实验,如示波器的操作入门和常见波形的测量,再到进阶部分,比如电路故障排除与复杂项目设计,旨在帮助学生掌握示波器的各项技能。文中不仅提供了详尽的操作流程指导,还包括针对每个阶段的学习目标设定、预期成果评估和所需注意事项。最终通过对示波器的深入理解和熟练运用,在实际应用场景(如构造简单设备或是进行音频处理)达到创新解决问题的目的。 适用人群:面向有志于深入理解电工仪器及其应用的学生或者技术人员,尤其是刚开始接触或正在强化自己这方面能力的学习者。 使用场景及目标:①作为培训材料支持初学者快速上手专业级电工测试设备—示波器;②用于教学环节辅助讲解电学概念以及实际操作技巧;③鼓励用户参与更高层次的DIY工程任务从而培养解决问题的能力.
标题中的“ntc热敏电阻 MF52AT 10K 3950精度1%STM32采集带数字滤波”表明我们要讨论的是一个使用STM32微控制器进行数据采集的系统,该系统中包含NTC热敏电阻MF52AT作为温度传感器。NTC热敏电阻是一种负温度系数的电阻器,其阻值随温度升高而降低。MF52AT型号的热敏电阻具有10K欧姆的标称电阻和3950的B值,表示在特定温度下(通常为25℃)的阻值和温度特性曲线。精度1%意味着该电阻的阻值有1%的允许误差,这对于温度测量应用来说是相当高的精度。 描述中提到的“MF52AT热敏电阻STM32数据采集2路”,暗示我们有两个这样的热敏电阻连接到STM32微控制器的模拟输入端口,用于采集温度数据。STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于各种嵌入式系统中,包括温度监测等应用。由于STM32内部集成了多个ADC(模拟数字转换器),因此它可以同时处理多路模拟输入信号。 "带滤波,项目中实际运用,温差范围在±0.5度",这表明在实际应用中,数据采集系统采用了某种数字滤波技术来提高信号质量,可能是低通滤波、滑动平均滤波或更复杂的数字信号处理算法。
SSM框架整合是Java开发中常见的技术栈,包括Spring、SpringMVC和Mybatis三个核心组件。这个压缩包提供了一个已经验证过的整合示例,帮助开发者理解和实践这三大框架的协同工作。 Spring框架是Java企业级应用的基石,它提供了一种依赖注入(Dependency Injection,DI)的方式,使得对象之间的依赖关系得以解耦,便于管理和服务。Spring还提供了AOP(面向切面编程)功能,用于实现如日志记录、事务管理等跨切面关注点的处理。 SpringMVC是Spring框架的一部分,专门用于构建Web应用程序。它采用了模型-视图-控制器(Model-View-Controller,MVC)设计模式,将业务逻辑、数据展示和用户交互分离,提高了代码的可维护性和可扩展性。在SpringMVC中,请求被DispatcherServlet接收,然后分发到相应的处理器,处理器执行业务逻辑后返回结果,最后由视图解析并展示给用户。 Mybatis是一个优秀的持久层框架,它简化了JDBC的繁琐操作,支持SQL语句的动态编写,使得开发者可以直接使用SQL来操作数据库,同时还能保持数
分割资源UE5.3.z25
Matlab 2021及以上版本:电气工程与自动化仿真实践——电力电子变换器微网建模与仿真研究,涵盖Boost、Buck整流逆变器闭环控制及光伏蓄电池电路等多重电气仿真,基于Matlab 2021及以上的电气工程与自动化仿真研究:电力电子变换器微网建模与Boost、Buck整流逆变器闭环控制及光伏蓄电池电路等多电气仿真分析,电气工程及其自动化仿真 Matlab simulink 电力电子变器微网建模仿真 仅限matlab版本2021及以上 Boost,Buck,整流逆变器闭环控制 光伏蓄电池电路等多种电气仿真 ,电气工程; Matlab simulink; 电力电子变换器; 微网建模仿真; Boost; Buck; 整流逆变器; 闭环控制; 光伏蓄电池电路; 电气仿真,Matlab 2021版电气工程自动化仿真研究:微网建模与控制策略
移动机器人路径规划,python入门程序
《DeepSeek从入门到精通》是清华大学推出的一套深度学习学习资源,内容涵盖基础知识、实用技巧和前沿应用,适合不同水平的学习者。通过系统化的学习路径,帮助你在深度学习领域快速成长。无论你是初学者还是
考虑新能源消纳的火电机组深度调峰策略:建立成本模型与经济调度,实现风电全额消纳的优化方案,考虑新能源消纳的火电机组深度调峰策略与经济调度模型研究,考虑新能源消纳的火电机组深度调峰策略 摘要:本代码主要做的是考虑新能源消纳的火电机组深度调峰策略,以常规调峰、不投油深度调峰、投油深度调峰三个阶段,建立了火电机组深度调峰成本模型,并以风电全额消纳为前提,建立了经济调度模型。 约束条件主要考虑煤燃烧约束、系统旋转备用功率约束、启停、爬坡、储热约束等等。 复现结果非常良好,结果图展示如下: 1、代码非常精品,有注释方便理解; ,核心关键词:新能源消纳;火电机组深度调峰策略;常规调峰;不投油深度调峰;投油深度调峰;成本模型;经济调度模型;煤燃烧约束;系统旋转备用功率约束;启停约束;爬坡约束;储热约束。,新能源优化调度策略:火电机组深度调峰及经济调度研究
"数字设计原理与实践" 数字设计是计算机科学和电子工程两个领域的交叉点,涉及到数字电路的设计和实现。本书籍《数字设计-原理与实践》旨在为读者提供一个系统的数字设计指南,从基本原理到实际应用,涵盖了数字设计的方方面面。 1. 数字设计的定义和目标 数字设计是指使用数字电路和系统来实现特定的功能目标的设计过程。在这个过程中,设计师需要考虑到各种因素,如电路的可靠性、功耗、面积等,以确保设计的数字电路能够满足实际应用的需求。 2. 数字设计的基本原理 数字设计的基本原理包括数字电路的基本元件,如逻辑门、 Flip-Flop、计数器、加法器等,以及数字电路的设计方法,如Combinational Logic、Sequential Logic和 Finite State Machine等。 3. 数字设计的设计流程 数字设计的设计流程通常包括以下几个步骤: * 需求分析:确定设计的目标和约束条件。 *电路设计:根据需求设计数字电路。 * 仿真验证:使用软件工具对设计的数字电路进行仿真和验证。 * 实现和测试:将设计的数字电路实现并进行测试。 4. 数字设计在实际应用中的应用 数字设计在实际应用中
基于Simulink仿真的直流电机双闭环控制系统设计与分析:转速电流双闭环PWM控制策略及7天报告研究,基于Simulink仿真的直流电机双闭环控制系统分析与设计报告:转速电流双闭环PWM控制策略的7天实践,直流电机双闭环控制系统仿真 simulink仿真 7d 转速电流双闭环 PWM 含有报告哈 ,直流电机; 双闭环控制系统; Simulink仿真; 7d; 转速电流双闭环; PWM; 报告,7天完成双闭环控制系统仿真报告:直流电机转速电流PWM管理与Simulink仿真研究
三目标微电网能量调度优化:经济、环境友好与高效能分配的协同策略研究,微粒群算法在三目标微电网能量调度中的应用:经济、环境友好与优化调度的综合研究,微电网 能量调度 三目标微网调度, 经济调度 环境友好调度 优化调度 微电网能量调度问题的求解 问题描述: - 微电网:包含多个能量源,包括DG(分布式发电设备,如太阳能光伏板、微型燃气轮机等)、MT(燃油发电机)和FC(燃料电池)。 - 目标:通过合理分配各种能源的发电功率,满足负荷需求,同时使得微电网的发电成本最小化。 解决方法: 微粒群算法(Particle Swarm Optimization, PSO): - 步骤: - 初始化微粒群:根据给定的微电网问题约束,随机生成一定数量的微粒(粒子),每个粒子代表一种发电方案,包含DG、MT和FC的发电功率分配情况。 - 适应度函数:对每个粒子,计算其对应的发电成本,作为其适应度值。 - 更新速度和位置:根据当前适应度值和历史最优适应度值,通过PSO算法的公式,更新每个粒子的速度和位置,以寻找更优的发电功率分配。 - 约束处理:根据问题约束条件,
《无感滑膜技术:Microchip1078代码移植至ST芯片的实践指南》——新手必备的反正切算法与电子资料整合方案,《无感滑膜技术:Microchip1078代码移植至ST芯片的实践指南》——新手必备的反正切算法与电子资料全解析,无感滑膜,反正切,microchip1078代码移植到st芯片上,新手学习必备。 可以提供提供相应文档和keil工程,电子资料, ,无感滑膜; 反正切; microchip1078代码移植; ST芯片; 新手学习; 文档; Keil工程; 电子资料,无感滑膜算法移植至ST芯片的Microchip1078代码迁移指南
风光柴储混合微电网系统中的储能电池与互补能量管理技术研究及MATLAB模拟实现,风光柴储混合微电网系统中的储能电池与互补能量管理技术:基于MATLAB的智能调控体系,风光柴储+混合微电网+储能电池系统+互补能量管理+MATLA ,核心关键词:风光柴储; 混合微电网; 储能电池系统; 互补能量管理; MATLA;,风光柴储混合微网能量管理系统及储能电池应用
永磁同步电机PMSM无感FOC驱动与位置估算源码分享:跨平台兼容、高速动态响应、无需初始角度辨识,永磁同步电机PMSM无感FOC驱动与位置估算源码分享:跨平台兼容、高速动态响应、无需初始角度辨识,永磁同步电机pmsm无感foc驱动代码 位置估算源码 无刷直流电机无感foc源码,无感foc算法源码 若需要,可提供硬件 速度位置估算部分代码所使用变量全部使用国际标准单位,使用不到60行代码实现完整的位置速度观测器。 提供完整的观测器文档,供需要的朋友参考 程序使用自研观测器,代码全部是源码,不含任何库文件 送simulink仿真 代码可读性极好,关键变量注明单位 模块间完全解耦 高级工程师磁链法位置估算代码 跨平台兼容,提供ti平台或at32平台工程 电流环pi参数自动计算 效果如图 实现0速闭环启动 2hz以内转速角度收敛 动态响应性能好 无需初始角度辨识 电阻电感允许一定误差 ,核心关键词: 1. 永磁同步电机 (PMSM) 无感 FOC 驱动代码 2. 位置估算源码 3. 无刷直流电机无感 FOC 源码 4. 无感 FOC 算法源码 5. 硬件支持(可选) 6. 速度位置估算部分
模型可以通过管理器下载,一个sdxlbase一个sdxl refiner。 refiner的作用是先刷小图,满意了再提高分辨率,兼顾速度和质量。 导入ComfyUI可立即使用。