`
turingfellow
  • 浏览: 135105 次
  • 性别: Icon_minigender_1
  • 来自: 福建省莆田市
社区版块
存档分类
最新评论

Snowball分词

    博客分类:
  • jade
阅读更多
using System;
using Lucene.Net.Analysis;
using Lucene.Net.Analysis.Standard;
using SF.Snowball.Ext;
using System.Collections.Generic;
using System.Collections;
using OpenNLP.Tools.PosTagger;


namespace Lucene.Net.Analysis.Snowball

    //词汇的实体类,包括两个属性
public class myEwordEntity
    {
        public  string txtWord;//词的文本
        public string stemroot;//被过滤后词的词根
        public string posWord;//词的词性
        public int token_begin;//在文章中的开始位置
        public int token_end;//在文章中的结束位置
        public myEwordEntity()
        {
            txtWord = string.Empty;
            posWord = string.Empty;
            stemroot = string.Empty;
            token_begin = 0;
            token_end = 0;
        }
       
      
    }
    public class Stemmer
    {
        private char[] b;
        private int i,     /* offset into b */
            i_end, /* offset to end of stemmed word */
            j, k;
        private static int INC = 50;
        /* unit of size whereby b is increased */

        public Stemmer()
        {
            b = new char[INC];
            i = 0;
            i_end = 0;
        }

        /**
         * Add a character to the word being stemmed.  When you are finished
         * adding characters, you can call stem(void) to stem the word.
         */

        public void add(char ch)
        {
            if (i == b.Length)
            {
                char[] new_b = new char[i + INC];
                for (int c = 0; c < i; c++)
                    new_b[c] = b[c];
                b = new_b;
            }
            b[i++] = ch;
        }


        /** Adds wLen characters to the word being stemmed contained in a portion
         * of a char[] array. This is like repeated calls of add(char ch), but
         * faster.
         */

        public void add(char[] w, int wLen)
        {
            if (i + wLen >= b.Length)
            {
                char[] new_b = new char[i + wLen + INC];
                for (int c = 0; c < i; c++)
                    new_b[c] = b[c];
                b = new_b;
            }
            for (int c = 0; c < wLen; c++)
                b[i++] = w[c];
        }

        /**
         * After a word has been stemmed, it can be retrieved by toString(),
         * or a reference to the internal buffer can be retrieved by getResultBuffer
         * and getResultLength (which is generally more efficient.)
         */
        public string stemerToString()
        {
            return new String(b, 0, i_end);
        }

        /**
         * Returns the length of the word resulting from the stemming process.
         */
        public int getResultLength()
        {
            return i_end;
        }

        /**
         * Returns a reference to a character buffer containing the results of
         * the stemming process.  You also need to consult getResultLength()
         * to determine the length of the result.
         */
        public char[] getResultBuffer()
        {
            return b;
        }

        /* cons(i) is true <=> b[i] is a consonant. */
        private bool cons(int i)
        {
            switch (b[i])
            {
                case 'a':
                case 'e':
                case 'i':
                case 'o':
                case 'u': return false;
                case 'y': return (i == 0) ? true : !cons(i - 1);
                default: return true;
            }
        }

        /* m() measures the number of consonant sequences between 0 and j. if c is
           a consonant sequence and v a vowel sequence, and <..> indicates arbitrary
           presence,

              <c><v>       gives 0
              <c>vc<v>     gives 1
              <c>vcvc<v>   gives 2
              <c>vcvcvc<v> gives 3
              ....
        */
        private int m()
        {
            int n = 0;
            int i = 0;
            while (true)
            {
                if (i > j) return n;
                if (!cons(i)) break; i++;
            }
            i++;
            while (true)
            {
                while (true)
                {
                    if (i > j) return n;
                    if (cons(i)) break;
                    i++;
                }
                i++;
                n++;
                while (true)
                {
                    if (i > j) return n;
                    if (!cons(i)) break;
                    i++;
                }
                i++;
            }
        }

        /* vowelinstem() is true <=> 0,...j contains a vowel */
        private bool vowelinstem()
        {
            int i;
            for (i = 0; i <= j; i++)
                if (!cons(i))
                    return true;
            return false;
        }

        /* doublec(j) is true <=> j,(j-1) contain a double consonant. */
        private bool doublec(int j)
        {
            if (j < 1)
                return false;
            if (b[j] != b[j - 1])
                return false;
            return cons(j);
        }

        /* cvc(i) is true <=> i-2,i-1,i has the form consonant - vowel - consonant
           and also if the second c is not w,x or y. this is used when trying to
           restore an e at the end of a short word. e.g.

              cav(e), lov(e), hop(e), crim(e), but
              snow, box, tray.

        */
        private bool cvc(int i)
        {
            if (i < 2 || !cons(i) || cons(i - 1) || !cons(i - 2))
                return false;
            int ch = b[i];
            if (ch == 'w' || ch == 'x' || ch == 'y')
                return false;
            return true;
        }

        private bool ends(String s)
        {
            int l = s.Length;
            int o = k - l + 1;
            if (o < 0)
                return false;
            char[] sc = s.ToCharArray();
            for (int i = 0; i < l; i++)
                if (b[o + i] != sc[i])
                    return false;
            j = k - l;
            return true;
        }

        /* setto(s) sets (j+1),...k to the characters in the string s, readjusting
           k. */
        private void setto(String s)
        {
            int l = s.Length;
            int o = j + 1;
            char[] sc = s.ToCharArray();
            for (int i = 0; i < l; i++)
                b[o + i] = sc[i];
            k = j + l;
        }

        /* r(s) is used further down. */
        private void r(String s)
        {
            if (m() > 0)
                setto(s);
        }

        /* step1() gets rid of plurals and -ed or -ing. e.g.
               caresses  ->  caress
               ponies    ->  poni
               ties      ->  ti
               caress    ->  caress
               cats      ->  cat

               feed      ->  feed
               agreed    ->  agree
               disabled  ->  disable

               matting   ->  mat
               mating    ->  mate
               meeting   ->  meet
               milling   ->  mill
               messing   ->  mess

               meetings  ->  meet

        */

        private void step1()
        {
            if (b[k] == 's')
            {
                if (ends("sses"))
                    k -= 2;
                else if (ends("ies"))
                    setto("i");
                else if (b[k - 1] != 's')
                    k--;
            }
            if (ends("eed"))
            {
                if (m() > 0)
                    k--;
            }
            else if ((ends("ed") || ends("ing")) && vowelinstem())
            {
                k = j;
                if (ends("at"))
                    setto("ate");
                else if (ends("bl"))
                    setto("ble");
                else if (ends("iz"))
                    setto("ize");
                else if (doublec(k))
                {
                    k--;
                    int ch = b[k];
                    if (ch == 'l' || ch == 's' || ch == 'z')
                        k++;
                }
                else if (m() == 1 && cvc(k)) setto("e");
            }
        }

        /* step2() turns terminal y to i when there is another vowel in the stem. */
        private void step2()
        {
            if (ends("y") && vowelinstem())
                b[k] = 'i';
        }

        /* step3() maps double suffices to single ones. so -ization ( = -ize plus
           -ation) maps to -ize etc. note that the string before the suffix must give
           m() > 0. */
        private void step3()
        {
            if (k == 0)
                return;

            /* For Bug 1 */
            switch (b[k - 1])
            {
                case 'a':
                    if (ends("ational")) { r("ate"); break; }
                    if (ends("tional")) { r("tion"); break; }
                    break;
                case 'c':
                    if (ends("enci")) { r("ence"); break; }
                    if (ends("anci")) { r("ance"); break; }
                    break;
                case 'e':
                    if (ends("izer")) { r("ize"); break; }
                    break;
                case 'l':
                    if (ends("bli")) { r("ble"); break; }
                    if (ends("alli")) { r("al"); break; }
                    if (ends("entli")) { r("ent"); break; }
                    if (ends("eli")) { r("e"); break; }
                    if (ends("ousli")) { r("ous"); break; }
                    break;
                case 'o':
                    if (ends("ization")) { r("ize"); break; }
                    if (ends("ation")) { r("ate"); break; }
                    if (ends("ator")) { r("ate"); break; }
                    break;
                case 's':
                    if (ends("alism")) { r("al"); break; }
                    if (ends("iveness")) { r("ive"); break; }
                    if (ends("fulness")) { r("ful"); break; }
                    if (ends("ousness")) { r("ous"); break; }
                    break;
                case 't':
                    if (ends("aliti")) { r("al"); break; }
                    if (ends("iviti")) { r("ive"); break; }
                    if (ends("biliti")) { r("ble"); break; }
                    break;
                case 'g':
                    if (ends("logi")) { r("log"); break; }
                    break;
                default:
                    break;
            }
        }

        /* step4() deals with -ic-, -full, -ness etc. similar strategy to step3. */
        private void step4()
        {
            switch (b[k])
            {
                case 'e':
                    if (ends("icate")) { r("ic"); break; }
                    if (ends("ative")) { r(""); break; }
                    if (ends("alize")) { r("al"); break; }
                    break;
                case 'i':
                    if (ends("iciti")) { r("ic"); break; }
                    break;
                case 'l':
                    if (ends("ical")) { r("ic"); break; }
                    if (ends("ful")) { r(""); break; }
                    break;
                case 's':
                    if (ends("ness")) { r(""); break; }
                    break;
            }
        }

        /* step5() takes off -ant, -ence etc., in context <c>vcvc<v>. */
        private void step5()
        {
            if (k == 0)
                return;

            /* for Bug 1 */
            switch (b[k - 1])
            {
                case 'a':
                    if (ends("al")) break; return;
                case 'c':
                    if (ends("ance")) break;
                    if (ends("ence")) break; return;
                case 'e':
                    if (ends("er")) break; return;
                case 'i':
                    if (ends("ic")) break; return;
                case 'l':
                    if (ends("able")) break;
                    if (ends("ible")) break; return;
                case 'n':
                    if (ends("ant")) break;
                    if (ends("ement")) break;
                    if (ends("ment")) break;
                    /* element etc. not stripped before the m */
                    if (ends("ent")) break; return;
                case 'o':
                    if (ends("ion") && j >= 0 && (b[j] == 's' || b[j] == 't')) break;
                    /* j >= 0 fixes Bug 2 */
                    if (ends("ou")) break; return;
                /* takes care of -ous */
                case 's':
                    if (ends("ism")) break; return;
                case 't':
                    if (ends("ate")) break;
                    if (ends("iti")) break; return;
                case 'u':
                    if (ends("ous")) break; return;
                case 'v':
                    if (ends("ive")) break; return;
                case 'z':
                    if (ends("ize")) break; return;
                default:
                    return;
            }
            if (m() > 1)
                k = j;
        }

        /* step6() removes a final -e if m() > 1. */
        private void step6()
        {
            j = k;

            if (b[k] == 'e')
            {
                int a = m();
                if (a > 1 || a == 1 && !cvc(k - 1))
                    k--;
            }
            if (b[k] == 'l' && doublec(k) && m() > 1)
                k--;
        }

        /** Stem the word placed into the Stemmer buffer through calls to add().
         * Returns true if the stemming process resulted in a word different
         * from the input.  You can retrieve the result with
         * getResultLength()/getResultBuffer() or toString().
         */
        public void stem()
        {
            k = i - 1;
            if (k > 1)
            {
                step1();
                step2();
                step3();
                step4();
                step5();
                step6();
            }
            i_end = k + 1;
            i = 0;
        }
    }

  
   
/// <summary>Filters {@link StandardTokenizer} with {@link StandardFilter}, {@link
/// LowerCaseFilter}, {@link StopFilter} and {@link SnowballFilter}.
///
/// Available stemmers are listed in {@link SF.Snowball.Ext}.  The name of a
/// stemmer is the part of the class name before "Stemmer", e.g., the stemmer in
/// {@link EnglishStemmer} is named "English".
/// </summary>
    public class SnowballAnalyzer : Analyzer
    {
        private System.String name;
        private System.Collections.Hashtable stopSet;//停用词表
        private string mModelPath; //词性标注软件模型所在位置

        /// <summary>Builds the named analyzer with no stop words. </summary>
        public SnowballAnalyzer(System.String name)
        {
            //获得词性标注软件模型所在位置。模型文件一般放在本工程下面
            mModelPath = System.IO.Path.GetDirectoryName(
            System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);
            mModelPath = new System.Uri(mModelPath).LocalPath + @"\Models\";
            this.name = name;
        }

        /// <summary>Builds the named analyzer with the given stop words. </summary>
        public SnowballAnalyzer(System.String name, System.String[] stopWords)
            : this(name)
        {
            stopSet = StopFilter.MakeStopSet(stopWords);
        }

        /// <summary>Constructs a {@link StandardTokenizer} filtered by a {@link
        /// StandardFilter}, a {@link LowerCaseFilter} and a {@link StopFilter}.
        /// </summary>
        public override TokenStream TokenStream(System.String fieldName, System.IO.TextReader reader)
        {
            TokenStream result = new StandardTokenizer(reader);
            result = new StandardFilter(result);
            result = new LowerCaseFilter(result);
            if (stopSet != null)
                result = new StopFilter(result, stopSet);
            //从result NokenStream 分离出Token 来,确定词性。
            //  result = new SnowballFilter(result, name);
            return result;
        }
        /// <summary>
        /// 根据Snowball源码自己写的 Analyzer,返回词汇实体列表代替原来调用的TokenStream
        ///
        /// </summary>
        /// <param name="fieldName"></param>
        /// <param name="reader"></param>
        /// <returns></returns>
        public List<myEwordEntity> TokenStreamToEntityList(System.String fieldName, System.IO.TextReader reader)
        {
            TokenStream result = TokenStream(fieldName, reader);
            // TokenStream result2 = TokenStream(fieldName, reader);

            List<myEwordEntity> wordEnList = new List<myEwordEntity>();
            while (true)
            {
                Token token = result.Next();
                myEwordEntity entity = new myEwordEntity();
                if (token == null)
                    break;
                else
                {
                    entity.token_begin = token.StartOffset();
                    entity.token_end = token.EndOffset();
                    entity.txtWord = token.TermText();//获得词汇文本
                    entity.stemroot = AfterStemed(entity.txtWord);
                    wordEnList.Add(entity);

                }
            }

            ArrayList myposlist = new ArrayList();
            foreach (myEwordEntity entity in wordEnList)
            {
                myposlist.Add(entity.txtWord);
            }
            EnglishMaximumEntropyPosTagger mTager = new EnglishMaximumEntropyPosTagger(mModelPath + "EnglishPOS.nbin", mModelPath + @"\Parser\tagdict");
            myposlist = mTager.Tag(myposlist);
            for (int i = 0; i < myposlist.Count; i++)
            {
                wordEnList[i].posWord = myposlist[i].ToString();
            }

            //对每个词汇进行词根还原
            /*  result2 = new SnowballFilter(result2, name);
               int k=0;//工作下标
              while(true)
              {
                  Token token=result2.Next();
                  if (token == null)
                      break;
                  else
                  {
                      wordEnList[k].stemroot= token.TermText();
                      k++;
                  }
              
              }*/
            return wordEnList;



        }
        public string AfterStemed(string input)
        {
            Stemmer s = new Stemmer();

            input = input.ToLower();
            char[] inputchar = input.ToCharArray();
            s.add(inputchar, inputchar.Length);
            s.stem();
            string u = s.stemerToString();
            return u;




        }
    }
}
分享到:
评论

相关推荐

    目前最新搜索引擎Elasticsearch5.2

    3. 分词器升级:新的分词器如IK(智能中文分词器)和 Snowball 分词器,为不同语言和场景提供了更好的文本分析能力。 二、稳定性与可靠性 1. 数据恢复:5.2版改进了数据恢复机制,当节点重新加入集群或发生故障后,...

    php分词 thinkphp分词源码

    PHP分词工具有很多,如PHP_Pinyin(用于中文分词及拼音转换)、Sphinx(一个高性能的全文搜索引擎)、Snowball(一种词干提取算法)等。这些工具通常基于词典或者统计模型,如TF-IDF、BM25等,通过比较词汇的频率和...

    ES7.11.1各种分词器和插件

    1. **Snowball Porter Stemmer插件**:应用Snowball算法进行词干提取,减少词汇形态变化对搜索结果的影响。 2. **ICU分词器插件**:提供更高级的Unicode语言处理,包括复杂的脚本拆分和语言特定的词形还原。 3. **...

    PHP 中文分词......................

    3. **Snowball**:虽然主要是用于英文词干提取,但通过结合第三方中文词库,也可以实现简单的中文分词。 4. **PHPCWS**:基于PSCWS的PHP5.3版本以上版本的分词库,增加了对多字词的支持。 5. **THULAC**:由北京...

    lucene 中文分词 庖丁解牛

    3. Snowball Analyzer:基于Lucene的分词器,支持多国语言,但对中文支持有限,需配合其他中文分词库使用。 4. PKUAnnotator:北京大学开发的中文分词系统,具有较高的准确率和召回率。 五、选择与优化 不同的分词...

    Solr分词项目工程实例

    5. SnowballFilter:基于Snowball算法进行词干提取。 根据实际需求,开发者可以自定义分词器和过滤器,或者组合使用现有的组件,构建自己的分析链。 三、Solr分词项目的实施 在实际项目中,Solr的分词流程通常...

    基于Python语言的中文分词技术的研究.zip

    词典的大小和质量直接影响分词效果,Snowball算法用于生成词典,能够快速扩展到多种语言。 3. **HMM(隐马尔可夫模型)算法**:jieba分词运用了HMM,这是一种统计学方法,通过观察序列来推断隐藏状态。HMM可以学习...

    分词和词性标注工具

    在NLP研究和开发中,有一些知名的开源分词和词性标注工具,例如哈工大的ICTCLAS、北京大学的PKU Snowball、 Stanford NLP工具包以及NLTK(自然语言工具包)等。这些工具不仅提供了基本的分词和词性标注功能,还可能...

    自己开发的分词软件,词频分析工具。

    本文将详细介绍一款由个人开发者基于CSWS(Chinese Snowball Word Segmentation,中文雪球分词算法)开发的分词软件及词频分析工具,帮助读者理解和掌握相关知识。 首先,我们来了解一下“分词”。分词是自然语言...

    JS中文分词语

    3. Snowball.js:一个基于词典的轻量级分词库,适用于简单的分词需求。 4. THULAC.js:清华大学开发的词性标注和分词工具的JavaScript版本,适合学术和专业文本的处理。 三、JS分词的实际应用 1. 搜索引擎优化:...

    ES开发工具备用,包括分词,kibana

    默认的分词器是`standard`,但可以根据需求定制或选择其他预定义的分词器,如`simple`, `whitespace`, `keyword`, `stop`, `snowball`等。 1. **自定义分词器**:通过定义自己的分词规则,可以实现特定语言或业务...

    文本分类之词频统计(分词、词干提取、去停用词、计算词频,有界面)

    这个过程通常需要词干提取算法,如Snowball Stemmer或Lancaster Stemmer,但中文处理中,由于词形变化较少,词干提取可能相对简单,更多的是通过规则来实现。 **去停用词** 是指移除文本中无实际含义或者对主题理解...

    fenci.zip_stemming java

    Java中,我们可以使用Lancaster Stemmer、Porter Stemmer或者Snowball Stemmer等库来实现。其中,Porter Stemmer是最广泛使用的算法,它通过一系列规则将单词转换为其“词根”形式。例如,“running”会被转换为...

    lucene(jar)

    分析器是处理文本的关键组件,它负责将输入的文本分割成可索引的词项,通常涉及分词、去除停用词、词形还原等步骤。5.5.0版本的分析器支持多种语言,包括英语、中文、法语等,并提供了一些预定义的分析器,如...

    libstemmer_java.gz_stemmer

    《深入理解libstemmer_java:Linux环境下的分词利器》 在信息技术的海洋中,文本处理扮演着至关重要的角色,而分词作为其中的基础环节,是理解和分析文本内容的关键步骤。libstemmer_java是一个专为Java开发的高效...

    lucene中文下载

    - **分词库**:如 Snowball 或 IK 分词库,提供对中文词汇的切分,以满足搜索需求。 **4. Lucene 应用步骤** 1. **创建索引**:创建一个 `Directory` 对象,如 `FSDirectory`,表示索引存储的位置。然后使用 `...

    Text-Mining-in-R_刘思喆

    - **SnowballC**:基于Snowball词干算法,适用于多种语言的词干提取。 - **quanteda**:一个全面的文本分析框架,支持复杂的数据类型和分析方法。 - **wordnet**:提供了一个英语词汇数据库的接口,用于词义和...

    b.rar_单词识别_英文单词识别

    若没有现成的库,需要自己实现这些规则,否则可以寻找第三方库如Snowball C++库。 5. **输出结果**:将提取后的词干打印到屏幕。可以使用`std::cout`进行输出。 在实现过程中,需要注意以下几点: - 处理边界情况,...

    K-Means文本聚类python实现

    3. 词干提取与词形还原:使用如NLTK库的Porter Stemmer或Snowball Stemmer来减少词汇的不同形态,转化为基本形式。 4. TF-IDF表示:将文本转换为数值向量,TF-IDF(Term Frequency-Inverse Document Frequency)是...

    使用python进行文本预处理和提取特征的实例1.zip

    我们将主要关注以下几点:数据读取、文本清洗、分词、词干提取与词形还原、去除停用词、TF-IDF向量化以及词袋模型。 首先,Python提供了多个库来处理文本数据,如`nltk`(Natural Language Toolkit)和`spaCy`。在`...

Global site tag (gtag.js) - Google Analytics