`
trophy
  • 浏览: 178631 次
  • 性别: Icon_minigender_1
  • 来自: 济南
社区版块
存档分类
最新评论

TCP/IP三次握手与四次挥手 【转】

 
阅读更多

转自:http://blog.chinaunix.net/uid-22312037-id-3575121.html

 

一、TCP报文格式
        TCP/IP协议的详细信息参看《TCP/IP协议详解》三卷本。下面是TCP报文格式图:


图1 TCP报文格式

        上图中有几个字段需要重点介绍下:
        (1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
        (2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。
        (3)标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:
                (A)URG:紧急指针(urgent pointer)有效。
                (B)ACK:确认序号有效。
                (C)PSH:接收方应该尽快将这个报文交给应用层。
                (D)RST:重置连接。
                (E)SYN:发起一个新连接。
                (F)FIN:释放一个连接。

        需要注意的是:
                (A)不要将确认序号Ack与标志位中的ACK搞混了。
                (B)确认方Ack=发起方Req+1,两端配对。 

二、三次握手
        所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:


图2 TCP三次握手

        (1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。
        (2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。
        (3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。
        
        SYN攻击:
                在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:
                #netstat -nap | grep SYN_RECV

三、四次挥手
         三次握手耳熟能详,四次挥手估计就所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:


图3 TCP四次挥手

        由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。
        (1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态

        (2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态
        (3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态

        (4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1Server进入CLOSED状态,完成四次挥手。
        上面是一方主动关闭,另一方被动关闭的情况,实际中还会出现同时发起主动关闭的情况,具体流程如下图:


图4 同时挥手
        流程和状态在上图中已经很明了了,在此不再赘述,可以参考前面的四次挥手解析步骤。

四、附注
        关于三次握手与四次挥手通常都会有典型的面试题,在此提出供有需求的XDJM们参考:
        (1)三次握手是什么或者流程?四次握手呢?答案前面分析就是。
        (2)为什么建立连接是三次握手,而关闭连接却是四次挥手呢?
        这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。
2.为什么TIME_WAIT状态还需要等2MSL后才能返回到CLOSED状态?
 
这是因为虽然双方都同意关闭连接了,而且握手的4个报文也都协调和发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SEND状态到ESTABLISH状态那样);但是因为我们必须要假想网络是不可靠的,你无法保证你最后发送的ACK报文会一定被对方收到,因此对方处于LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的ACK报文。
分享到:
评论

相关推荐

    tcp/ip,三次握手四次死挥手

    TCP/IP 协议群,三次握手四次死挥手 TCP/IP 协议群是计算机网络中最重要的基础协议之一,它是指一组使用 IP 进行通信时所必须用到的协议的统称。TCP/IP 协议群包括 IP、ICMP、TCP、UDP、TELNET、FTP、HTTP 等协议,...

    TCP/IP协议族(第四版)习题答案

    习题可能涉及到TCP的三次握手、四次挥手、拥塞控制、滑动窗口机制以及UDP的特点与应用场景。 应用层是最接近用户的层次,包含了众多的应用协议,如HTTP、FTP、SMTP、DNS等。HTTP用于网页浏览,FTP用于文件传输,...

    TCP三次握手与四次挥手.pdf

    为了实现可靠的连接,TCP采用了三次握手(建立连接)和四次挥手(断开连接)的过程。这两个过程是确保数据传输前建立连接与传输后释放连接的关键机制。 首先,来详细介绍TCP三次握手的过程: 1. 第一次握手:...

    Wireshark抓包分析TCP“三次握手,四次挥手”.doc

    Wireshark 抓包分析 TCP“三次握手,四次挥手” Wireshark 是一个功能强大的网络抓包...通过 Wireshark 抓包分析 TCP“三次握手,四次挥手”过程,我们可以更好地理解 TCP/IP 传输的机理,提高自己的计算机网络知识。

    TCP/IP协议详解全三卷 下载

    书中深入探讨了这些协议的工作原理,如IP地址的分配、分片与重组、TCP的三次握手和四次挥手、拥塞控制等机制。 第二卷《TCP/IP实现》则侧重于实际的实现细节,比如TCP的连接管理、滑动窗口机制、超时与重传策略,...

    TCP IP 详解三宗卷,tcp,ip详解(三卷全)pdf,C,C++

    卷3《TCP/IP详解:TCP事务协议》聚焦于TCP的事务处理,如TCP的三次握手和四次挥手过程,这是建立和断开TCP连接的关键步骤。同时,这本书也探讨了TCP的性能优化和异常情况处理,以及TCP与其他应用层协议的交互。 ...

    wireshark抓包分析tcp三次握手四次挥手

    在TCP/IP通信中,TCP连接的建立和关闭过程分别称为三次握手和四次挥手,这两个过程对于理解TCP连接的工作原理至关重要。 首先,我们来详细讲解TCP的三次握手过程: 1. **第一次握手**:客户端(Client)发送一个...

    TCP/IP 卷一 TCP/IP 详解

    - TCP协议的工作机制,如三次握手、四次挥手、滑动窗口、拥塞控制等。 - UDP协议的特点和应用场景。 - 面向连接的服务与无连接服务的区别。 - 端口和套接字的概念,以及它们在通信过程中的作用。 - ARP(地址解析...

    TCP/IP源码 完整的TCP/IP代码程序

    在源码中,你会看到TCP连接的建立(三次握手)、数据传输、以及断开连接(四次挥手)的过程。此外,TCP还采用了滑动窗口机制来控制流量和实现拥塞避免。 2. **IP(网际协议)**:IP负责将数据包发送到目标地址,它...

    tcp/ip教程 tcp/ip教程

    1. **建立连接**:TCP使用三次握手建立连接,确保双方都有能力并愿意进行通信。 2. **数据传输**:TCP通过滑动窗口机制来控制数据传输速率,避免拥塞,并确保数据的可靠传输。 3. **确认与重传**:TCP使用ACK(确认...

    TCP/IP协议分析与应用学习资料

    TCP通过三次握手建立连接,并在数据传输结束后四次挥手断开连接。 IP(Internet Protocol)是网络层的主要协议,负责数据包在网络中的路由。它不保证数据包的顺序或可靠性,但提供了基本的寻址机制,使得数据包能够...

    wireshark抓包分析tcp三次握手四次挥手详解及网络命令

    通过对Wireshark抓包分析TCP三次握手四次挥手的详细了解,我们可以更深入地理解TCP/IP协议的工作原理,这对于网络故障排查、性能优化等方面都有着重要的意义。此外,掌握Wireshark这样的工具也是提高网络技能不可或...

    TCP/IP高清资料详解

    在这一卷中,读者可以了解到IP地址的结构、子网掩码的运用、ICMP(Internet Control Message Protocol)的工作原理,以及TCP的三次握手和四次挥手过程。此外,还会探讨端口的概念,以及TCP如何保证数据的可靠传输。 ...

    TCP/IP协议族 (TCP/IP Protocol Suite)PDF第4版

    7. **TCP三次握手与四次挥手**:TCP建立连接时需要三次握手,确保双方都能发送和接收数据;断开连接则需要四次挥手,确保所有数据都已发送并确认,防止数据丢失。 8. **TCP滑动窗口机制**:TCP通过滑动窗口实现流量...

    TCP/IP协议中三次握手四次挥手的原理及流程分析

    TCP/IP协议中三次握手四次挥手的原理及流程分析 TCP/IP协议中三次握手四次挥手的原理及流程分析是计算机网络中非常重要的概念。它主要介绍了TCP/IP协议中三次握手四次挥手的原理及流程分析,具有一定参考价值。 ...

    tcp/ip详解,卷2:实现源码

    1. **TCP连接管理**:包括三次握手建立连接和四次挥手断开连接的过程。源码中会展示如何处理SYN、ACK、FIN等不同类型的报文段,以及超时重传和半关闭状态的处理。 2. **滑动窗口机制**:TCP使用滑动窗口来控制流量...

    TCP/IP高清电子书

    3. TCP连接建立与释放:理解三次握手和四次挥手的过程。 4. ICMP与ARP:了解它们在网络诊断和地址解析中的作用。 5. DNS系统:深入理解域名解析的过程和DNS记录类型。 6. 应用层协议:学习HTTP、FTP、SMTP等协议的...

    tcp/ip协议.pdf

    TCP/IP的三次握手和四次挥手是理解TCP连接建立和终止的关键过程。三次握手指的是在建立连接时,客户端和服务器之间进行的一系列通信步骤,以确认双方的接收和发送能力;四次挥手则是断开TCP连接时双方进行的确认和...

    TCP/IP调试助手2.zip

    4. **连接测试**:可以进行TCP连接测试,检查两台设备间的连接是否畅通,包括三次握手和四次挥手过程。 5. **协议解析**:将接收到的数据包按照TCP/IP协议结构进行解析,展示每个字段的详细信息,有助于理解协议...

    TCP/IP实例精心制作

    它确保数据能够按照发送顺序正确无误地到达接收方,通过使用三次握手建立连接,四次挥手断开连接。在TCP中,如果数据包在网络中丢失或损坏,TCP会自动重发这些包,从而保证数据的完整性。 IP(互联网协议)则是负责...

Global site tag (gtag.js) - Google Analytics