如果想统计下过去10年计算机论文出现最多的几个单词,看看大家都在研究些什么,那收集好论文后,该怎么办呢?
方法一:我可以写一个小程序,把所有论文按顺序遍历一遍,统计每一个遇到的单词的出现次数,最后就可以知道哪几个单词最热门了。
这种方法在数据集比较小时,是非常有效的,而且实现最简单,用来解决这个问题很合适。
方法二:写一个多线程程序,并发遍历论文。
这个问题理论上是可以高度并发的,因为统计一个文件时不会影响统计另一个文件。当我们的机器是多核或者多处理器,方法二肯定比方法一高效。但是写一个多线程程序要比方法一困难多了,我们必须自己同步共享数据,比如要防止两个线程重复统计文件。
方法三:把作业交给多个计算机去完成。
我们可以使用方法一的程序,部署到N台机器上去,然后把论文集分成N份,一台机器跑一个作业。这个方法跑得足够快,但是部署起来很麻烦,我们要人工把程序copy到别的机器,要人工把论文集分开,最痛苦的是还要把N个运行结果进行整合(当然我们也可以再写一个程序)。
方法四:让MapReduce来帮帮我们吧!
MapReduce本质上就是方法三,但是如何拆分文件集,如何copy程序,如何整合结果这些都是框架定义好的。我们只要定义好这个任务(用户程序),其它都交给MapReduce。
-------------
MapReduce 本质就是分布式计算+分布式存储 这就是所谓的Map, 当然了分布式计算后肯定要合并结果集的,这就有了Reduce。
比多线程程序更进了一步。
- 大小: 52 KB
分享到:
相关推荐
实验项目“MapReduce 编程”旨在让学生深入理解并熟练运用MapReduce编程模型,这是大数据处理领域中的核心技术之一。实验内容涵盖了从启动全分布模式的Hadoop集群到编写、运行和分析MapReduce应用程序的全过程。 ...
基于MapReduce实现决策树算法的知识点 基于MapReduce实现决策树算法是一种使用MapReduce框架来实现决策树算法的方法。在这个方法中,主要使用Mapper和Reducer来实现决策树算法的计算。下面是基于MapReduce实现决策...
MapReduce是一种分布式计算模型,由Google在2004年提出,主要用于处理和生成大规模数据集。这个模型将复杂的计算任务分解成两个主要阶段:Map(映射)和Reduce(化简),使得在大规模分布式环境下处理大数据变得可能...
【标题】Hadoop MapReduce 实现 WordCount MapReduce 是 Apache Hadoop 的核心组件之一,它为大数据处理提供了一个分布式计算框架。WordCount 是 MapReduce 框架中经典的入门示例,它统计文本文件中每个单词出现的...
### 大数据实验四-MapReduce编程实践 #### 一、实验内容与目的 ##### 实验内容概述 本次实验的主要内容是使用MapReduce框架来实现WordCount词频统计功能,即统计HDFS(Hadoop Distributed File System)系统中多个...
MapReduce之数据清洗ETL详解 MapReduce是一种基于Hadoop的分布式计算框架,广泛应用于大数据处理领域。数据清洗(Data Cleaning)是数据处理过程中非常重要的一步,旨在清洁和转换原始数据,使其更加可靠和有用。...
单词计数是最简单也是最能体现 MapReduce 思想的程序之一,可以称为 MapReduce 版“Hello World”。单词计数的主要功能是统计一系列文本文件中每个单词出现的次数。本节通过单词计数实例来阐述采用 MapReduce 解决...
基于MapReduce的Apriori算法代码 基于MapReduce的Apriori算法代码是一个使用Hadoop MapReduce框架实现的关联规则挖掘算法,称为Apriori算法。Apriori算法是一种经典的关联规则挖掘算法,用于发现事务数据库中频繁...
【大数据Hadoop MapReduce词频统计】 大数据处理是现代信息技术领域的一个重要概念,它涉及到海量数据的存储、管理和分析。Hadoop是Apache软件基金会开发的一个开源框架,专门用于处理和存储大规模数据集。Hadoop的...
(2)打开网站localhost:8088和localhost:50070,查看MapReduce任务启动情况 (3)写wordcount代码并把代码生成jar包 (4)运行命令 (1):把linus下的文件放到hdfs上 (2):运行MapReduce (5):查看运行结果 ...
MapReduce是一种分布式计算模型,由Google在2004年提出,主要用于处理和生成大规模数据集。它将复杂的并行计算任务分解成两个主要阶段:Map(映射)和Reduce(化简)。在这个"MapReduce项目 数据清洗"中,我们将探讨...
一个自己写的Hadoop MapReduce实例源码,网上看到不少网友在学习MapReduce编程,但是除了wordcount范例外实例比较少,故上传自己的一个。包含完整实例源码,编译配置文件,测试数据,可执行jar文件,执行脚本及操作...
在大数据处理领域,MapReduce是一种广泛使用的分布式计算框架,由Google提出并被Hadoop采纳为标准组件。本案例主要探讨如何使用MapReduce来求取数据集的行平均值,这在数据分析、数据挖掘以及日志分析等场景中非常...
### MapReduce基础知识详解 #### 一、MapReduce概述 **MapReduce** 是一种编程模型,最初由Google提出并在Hadoop中实现,用于处理大规模数据集的分布式计算问题。该模型的核心思想是将复杂的大型计算任务分解成较...
【MapReduce初级编程实践】是大数据处理中的一项基础任务,主要应用于大规模数据集的并行计算。在这个实验中,我们关注的是如何利用MapReduce来实现文件的合并与去重操作。MapReduce是一种分布式计算模型,由Google...
赠送jar包:hadoop-mapreduce-client-jobclient-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.6.5-sources.jar; 赠送...
MapReduce 编程模型简介 MapReduce 是一种编程模型,由 Jeffrey Dean 和 Sanjay Ghemawat 于 2004 年提出,用于处理大规模数据集的分布式计算。该模型将计算任务分解成两个主要阶段:Map 和 Reduce。Map 阶段将...
【标题】"基于javaweb + mapreduce的小型电影推荐系统"揭示了这个项目的核心技术栈,即Java Web和MapReduce。在这个系统中,Java Web技术用于构建前端用户界面和后端服务器逻辑,而MapReduce则被用作大数据处理框架...